Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Tissue Res ; 353(2): 261-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23512142

ABSTRACT

Imaging has gained a key role in modern glaucoma management. Traditionally, interest was directed toward the appearance of the optic nerve head and the retinal nerve fiber layer. With the improvement of the resolution of optical coherence tomography, the ganglion cell complex has also become routinely accessible in the clinic. Further advances have been made in understanding the structure-function relationship in glaucoma. Nevertheless, direct imaging of the retinal ganglion cells in glaucoma would be advantageous. With the currently used techniques, this goal cannot be achieved, because the transversal resolution is limited by aberrations of the eye. The use of adaptive optics has significantly improved transversal resolution, and the imaging of several cell types including cones and astrocytes has become possible. Imaging of retinal ganglion cells, however, still remains a problem, because of the transparency of these cells. However, the visualization of retinal ganglion cells and their dendrites has been achieved in animal models. Furthermore, attempts have been made to visualize the apoptosis of retinal ganglion cells in vivo. Implementation of these techniques in clinical practice will probably improve glaucoma care and facilitate the development of neuroprotective strategies.


Subject(s)
Diagnostic Imaging/methods , Glaucoma/diagnosis , Glaucoma/pathology , Retinal Ganglion Cells/pathology , Animals , Humans , Tomography, Optical Coherence
2.
Exp Eye Res ; 92(6): 545-51, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21443871

ABSTRACT

Impaired ocular blood flow is involved in the pathogenesis of numerous ocular diseases like glaucoma or AMD. The purpose of the present study was to introduce and validate a novel, microscope based, non-invasive Laser Doppler Flowmeter (NI-LDF) for measurement of blood flow in the choroid. The custom made NI-LDF was compared with a commercial fiber optic based laser Doppler flowmeter (Perimed PF4000). Linearity and stability of the NI-LDF were assessed in a silastic tubing model (i.d. 0.3 mm) at different flow rates (range 0.4-3 ml/h). In a rabbit model continuous choroidal blood flow measurements were performed with both instruments simultaneously. During blood flow measurements ocular perfusion pressure was changed by manipulations of intraocular pressure via intravitreal saline infusions. The NI-LDF measurement correlated linearly to intraluminal flow rates in the perfused tubing model (r = 0.99, p < 0.05) and remained stable during a 1 h measurement at a constant flow rate. Rabbit choroidal blood flow measured by the PF4000 and the NI-LDF linearly correlated with each other over the entire measurement range (r = 0.99, y = x∗1.01-12.35 P.U., p < 0.001). In conclusion, the NI-LDF provides valid, semi quantitative measurements of capillary blood flow in comparison to an established LDF instrument and is suitable for measurements at the posterior pole of the eye.


Subject(s)
Choroid/blood supply , Laser-Doppler Flowmetry/instrumentation , Microscopy/instrumentation , Regional Blood Flow/physiology , Animals , Blood Flow Velocity/physiology , Female , Intraocular Pressure/physiology , Male , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...