Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(5): e0285167, 2023.
Article in English | MEDLINE | ID: mdl-37134100

ABSTRACT

Pollinator health risks from long-lasting neonicotinoid insecticides like imidacloprid has primarily focused on commercially managed, cavity-nesting bees in the genera Apis, Bombus, and Osmia. We expand these assessments to include 12 species of native and non-native crop pollinators of differing levels of body size, sociality, and floral specialization. Bees were collected throughout 2016 and 2017 from flowering blueberry, squash, pumpkin, sunflower and okra in south Mississippi, USA. Within 30-60 minutes of capture, bees were installed in bioassay cages made from transparent plastic cups and dark amber jars. Bees were fed via dental wicks saturated with 27% (1.25 M) sugar syrup containing a realistic range of sublethal concentrations of imidacloprid (0, 5, 20, or 100 ppb) that are often found in nectar. Bees displayed no visible tremors or convulsions except for a small sweat bee, Halictus ligatus, and only at 100ppb syrup. Imidacloprid shortened the captive longevities of the solitary bees. Tolerant bee species lived ~10 to 12 days in the bioassays and included two social and one solitary species: Halictus ligatus, Apis mellifera and Ptilothrix bombiformis (rose mallow bees), respectively. No other bee species tolerated imidacloprid as well as honey bees did, which exhibited no appreciable mortality and only modest paralysis across concentration. In contrast, native bees either lived shorter lives, experienced longer paralysis, or endured both. Overall, longevity decreased with concentration linearly for social bees and non-linearly for solitary species. The percentage of a bee's captive lifespan spent paralyzed increased logarithmically with concentration for all species, although bumble bees suffered longest. Of greatest concern was comparable debilitation of agriculturally valuable solitary bees at both low and high sublethal rates of imidacloprid.


Subject(s)
Insecticides , Bees , Animals , Insecticides/toxicity , Imidazoles/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity
2.
Insects ; 11(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861802

ABSTRACT

Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) are destructive wood-boring insects of horticultural trees. We evaluated long-lasting insecticide netting for protecting stems against ambrosia beetles. Container-grown eastern redbud, Cercis canadensis, trees were flood-stressed to induce ambrosia beetle attacks, and deltamethrin-treated netting was wrapped from the base of the stem vertically to the branch junction. Trees were deployed under field conditions in Ohio, Virginia, Tennessee, and Mississippi with the following treatments: (1) flooded tree; (2) flooded tree with untreated netting; (3) flooded tree with treated 'standard mesh' netting of 24 holes/cm2; (4) flooded tree with treated 'fine mesh' netting of 28 holes/cm2; and/or (5) non-flooded tree. Treated netting reduced attacks compared to untreated netting and/or unprotected trees in Mississippi in 2017, Ohio and Tennessee in 2018, and Virginia in 2017-2018. Inconsistent effects occurred in Mississippi in 2018. Fewer Anisandrus maiche, Xylosandrus germanus, and Xyleborinus saxesenii were dissected from trees deployed in Ohio protected with treated netting compared to untreated netting; trees deployed in other locations were not dissected. These results indicate long-lasting insecticide netting can provide some protection of trees from ambrosia beetle attacks.

3.
J Econ Entomol ; 112(2): 753-762, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30649433

ABSTRACT

The majority of wood-boring ambrosia beetles are strongly attracted to ethanol, a behavior which could be exploited for management within ornamental nurseries. A series of experiments was conducted to determine if ethanol-based interception techniques could reduce ambrosia beetle pest pressure. In two experiments, trap trees injected with a high dose of ethanol were positioned either adjacent or 10-15 m from trees injected with a low dose of ethanol (simulating a mildly stressed tree) to determine if the high-dose trap trees could draw beetle attacks away from immediately adjacent stressed nursery trees. The high-ethanol-dose trees sustained considerably higher attacks than the low-dose trees; however, distance between the low- and high-dose trees did not significantly alter attack rates on the low-dose trees. In a third experiment, 60-m length trap lines with varying densities of ethanol-baited traps were deployed along a forest edge to determine if immigrating beetles could be intercepted before reaching sentinel traps or artificially stressed sentinel trees located 10 m further in-field. Intercept trap densities of 2 or 4 traps per trap line were associated with fewer attacks on sentinel trees compared to no traps, but 7 or 13 traps had no impact. None of the tested intercept trap densities resulted in significantly fewer beetles reaching the sentinel traps. The evaluated ethanol-based interception techniques showed limited promise for reducing ambrosia beetle pressure on nursery trees. An interception effect might be enhanced by applying a repellent compound to nursery trees in a push-pull strategy.


Subject(s)
Ambrosia , Coleoptera , Weevils , Animals , Insect Control , Trees
4.
J Econ Entomol ; 112(1): 173-180, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30277531

ABSTRACT

Spotted-wing Drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a vinegar fly introduced unintentionally into the United States. Since 2008, D. suzukii has reduced annual berry yields from 6 to 100%. Effective control of D. suzukii during harvest requires weekly applications of low-residual, broad-spectrum insecticides that are unavailable for organic farming. A novel ingestible insecticide, a 4-carbon polyol, mesoerythritol (erythritol), was found to kill 75 to 100% of larval and adult D. suzukii. However, mesoerythritol, at effective concentrations (0.5-1.0M), may be cost-prohibitive. Therefore, we conducted laboratory tests to assess the effects of lower cost derivatives of erythritol, namely the pentaerythritol series of 1,3-diols on D. suzukii pupal production, adult production, adult mortality, brood output, and reproductive increase. We then selected the two most promising compounds for a field test on fruiting rabbiteye blueberry. From 90 to 100% of adults died when fed food moistened with 1M solutions of mesoerythritol and pentaerythritol. Mesoerythritol and dipentaerythritol at a concentration of 1M were ovicidal/larvicidal, killing ≥85% of immatures. Overall, 1M mesoerythritol killed 80% or more larvae and adults, thus bringing populations to near zero. The heaviest compound of this series, tripentaerythritol, at all concentrations, was largely benign to both adults and immatures. Thus, we cannot recommend tripentaerythritol for D. suzukii control. In a blueberry field, 0.5M mesoerythritol and 0.5M pentaerythritol, each by themselves, reduced egg infestation by 64% and larval infestation by 93%; their combination (0.25M mesoerythritol and 0.25M pentaerythritol) achieved even greater egg control with 82% fewer eggs infesting blueberry fruits.


Subject(s)
Drosophila , Erythritol/analogs & derivatives , Insecticides/analysis , Animals , Blueberry Plants , Female , Insect Control , Male , Reproduction , Toxicity Tests
5.
J Econ Entomol ; 110(3): 1107-1112, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28369479

ABSTRACT

Limited male dispersal and local mating in ambrosia beetles are expected to result in extreme inbreeding and highly structured populations. In this study, we developed microsatellite markers for the granulate ambrosia beetle, Xylosandrus crassiusculus (Motschulsky), for use in future studies into population and family structure of this invasive pest species. We employed de novo next-generation sequencing to generate whole genome shotgun sequences for the characterization of microsatellite loci. Approximately 6% of the 84,024 contigs generated from Hi-Seq Illumina 2x250bp sequencing contained microsatellites with at least four repeats of di-, tri-, tetra-, penta-, and hexamers. Primers were synthesized for 40 microsatellite loci with trimer repeat units. Twenty-four primer pairs yielded consistent PCR products of unique loci and were validated for population genetic application using three sample groups each containing 20 X. crassiusculus individuals from Mississippi. Thirteen loci were found to be polymorphic with up to five alleles per population. The two beetle sample groups from Pearl River County (Poplarville and McNeill) belonged genetically to the same population. The population from Lamar County (Purvis) was genetically distinct, separated by a moderate genetic distance (FST = 0.11) and five unique alleles (with >5% frequency). Consistent with the perceived mating structure (incest of females with flightless males), the populations showed homozygote excess at most loci, as indicated by the coefficients of inbreeding (FIT = 0.45 and FIS = 0.37) and high mean relatedness among individuals (r = 0.15).


Subject(s)
Genetic Variation , Microsatellite Repeats , Weevils/genetics , Animals , Female , Genetic Speciation , Inbreeding , Male , Mississippi , Reproduction , Sequence Analysis, DNA , Weevils/physiology
6.
J Econ Entomol ; 108(4): 1947-53, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26470339

ABSTRACT

Some exotic ambrosia beetles are damaging pests in ornamental nurseries. Xylosandrus germanus (Blandford) is the most problematic ambrosia beetle in Ohio nurseries. Movement of X. germanus in nurseries has not been characterized, and knowledge is lacking on whether infestations originate from within nurseries or surrounding habitats. Flight activity of X. germanus was monitored in nurseries and adjacent wooded areas to determine the source of beetles infesting nurseries, and characterize their movement within nurseries. Ethanol-baited bottle traps were positioned within wooded areas adjacent to commercial nurseries and within nurseries at various distances from the nursery woodlot interface. Flight activity of overwintered X. germanus occurred in wooded areas adjacent to nurseries before occurrence within nurseries. There was a direct relationship between degree-days and the distance from woodlots when X. germanus were first found in traps in spring, with earlier captures closest to wooded areas and latest ones furthest away into the nursery. X. germanus appeared to move into nurseries from adjacent wooded areas, with numbers trapped within nurseries decreasing with distance away from wooded areas. Trees in the interior of nurseries would appear to be subjected to less attack pressure than trees near the nursery border. Intercepting beetles as they move into nurseries might be an effective strategy to reduce attack pressure on valuable trees.


Subject(s)
Animal Distribution , Ecosystem , Trees/growth & development , Weevils/physiology , Animals , Ohio , Seasons
7.
Pest Manag Sci ; 70(2): 324-31, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23633121

ABSTRACT

BACKGROUND: A mixture of wine and vinegar is more attractive than wine or vinegar to spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), and ethanol and acetic acid are considered key to that attractiveness. In addition to ethanol and acetic acid, 13 other wine and vinegar volatiles are antennally active to D. suzukii and might be involved in food finding. RESULTS: Out of the 13 antennally active chemicals, acetoin, ethyl lactate and methionol increased fly response to a mixture of acetic acid and ethanol in field trapping experiments. A five-component blend of acetic acid, ethanol, acetoin, ethyl lactate and methionol was as attractive as the starting mixture of wine and vinegar in field tests conducted in the states of Oregon and Mississippi. Subtracting ethyl lactate from the five-component blend did not reduce the captures of flies in the trap. However, subtracting any other compound from the blend significantly reduced the numbers of flies captured. CONCLUSION: These results indicate that acetic acid, ethanol, acetoin and methionol are key olfactory cues for D. suzukii when attracted to wine and vinegar, which may be food-finding behavior leading flies to fermenting fruit in nature. It is anticipated that this four-component blend can be used as a highly attractive chemical lure for detection and management of D. suzukii. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Drosophila/drug effects , Fermentation , Insect Control/methods , Organic Chemicals/isolation & purification , Organic Chemicals/pharmacology , Acetic Acid/chemistry , Animals , Chromatography, Gas , Female , Male , Organic Chemicals/chemical synthesis , Organic Chemicals/chemistry , Wine
8.
Nat Prod Commun ; 4(1): 123-7, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19370889

ABSTRACT

Essential oils of two Tibetan Junipers Juniperus saltuaria and J. squamata var. fargesii (Cupressaceae) were obtained by distilling dried leaves and branches using a Clevenger apparatus. Sixty-seven compounds from J. saltuaria and 58 from J. squamata var. fargesii were identified by gas chromatography-mass spectrometry (GC-MS). Both essential oils contained similar ratios of four abundant monoterpenoids: 44 and 35% sabinene, 13 and 9% elemol, 8 and 7% terpinen-4-ol, and 4 and 17% alpha-pinene, respectively. These oils had antifungal activity based on a direct bioautography assay of Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and insecticidal activity based on serial-time mortality bioassay of azalea lace bugs, Stephanitis pyrioides. Antifungal activity of Juniperus oils was weak when compared with commercial fungicides such as benomyl and captan. Whole Juniperus oils at quarter the dosage used against Colletotrichum species were more insecticidal than 10 mg/mL malathion, killing > or =70-90% adult lace bugs after 4 hours of exposure. Rf values of 0.18 for J. saltuaria oil and 0.19 for J. squamata oil indicated lipophilic monoterpenes which were the putative sources of biological activity.


Subject(s)
Antifungal Agents/pharmacology , Insecticides/pharmacology , Juniperus/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Animals , Antifungal Agents/chemistry , Hemiptera/drug effects , Insecticides/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...