Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 5020, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322059

ABSTRACT

Kelp forests are declining in many regions globally with climatic perturbations causing shifts to alternate communities and significant ecological and economic loss. Range edge populations are often at most risk and are often only sustained through localised areas of upwelling or on deeper reefs. Here we document the loss of kelp forests (Ecklonia radiata) from the Sultanate of Oman, the only confirmed northern hemisphere population of this species. Contemporary surveys failed to find any kelp in its only known historical northern hemisphere location, Sadah on the Dhofar coast. Genetic analyses of historical herbarium specimens from Oman confirmed the species to be E. radiata and revealed the lost population contained a common CO1 haplotype found across South Africa, Australia and New Zealand suggesting it once established through rapid colonisation throughout its range. However, the Omani population also contained a haplotype that is found nowhere else in the extant southern hemisphere distribution of E. radiata. The loss of the Oman population could be due to significant increases in the Arabian Sea temperature over the past 40 years punctuated by suppression of coastal upwelling. Climate-mediated warming is threatening the persistence of temperate species and precipitating loss of unique genetic diversity at lower latitudes.


Subject(s)
Kelp , Ecosystem , Forests , Kelp/genetics , Oman , Temperature
2.
Trends Ecol Evol ; 35(12): 1065-1067, 2020 12.
Article in English | MEDLINE | ID: mdl-32958366

ABSTRACT

Extreme climatic events cause devastating impacts to species and ecosystems, precipitating significant mortality. However, emerging empirical evidence is revealing that such mortality can drive directional selection and result in increased tolerance. We discuss the novel opportunities for promoting climate resilience presented by this 'silver lining' of extreme events.


Subject(s)
Climate Change , Ecosystem
3.
Sci Rep ; 10(1): 13388, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770015

ABSTRACT

Extreme climatic events including marine heatwaves (MHWs) are becoming more frequent and severe in the Anthropocene. However, our understanding of how these events affect population dynamics of ecologically important species is limited, in part because extreme events are rare and difficult to predict. Here, we quantified the occurrence and severity of MHWs over 60 years in warm range edge kelp forests on both sides of the North Atlantic. The cumulative annual intensity of MHWs increased two- to four-fold during this period, coinciding with the disappearance of kelps. We experimentally demonstrated a relationship between strong and severe 2018 heatwaves and high kelp mortality in both regions. Patterns of kelp mortality were strongly linked to maximum temperature anomalies, which crossed lethal thresholds in both regions. Translocation and tagging experiments revealed similar kelp mortality rates on reefs dominated by healthy kelp forests and degraded sediment-laden algal 'turfs', indicating equal vulnerability to extreme events. These results suggest a mechanistic link between MHWs and broad-scale kelp loss, and highlight how warming can make ecosystem boundaries unstable, forcing shifts to undesirable ecosystem states under episodically extreme climatic conditions.

4.
Sci Rep ; 8(1): 4956, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29651152

ABSTRACT

The escalating spread of invasive species increases the risk of disrupting the pathways of energy flow through native ecosystems, modify the relative importance of resource ('bottom-up') and consumer ('top-down') control in food webs and thereby govern biomass production at different trophic levels. The current lack of understanding of interaction cascades triggered by non-indigenous species underscores the need for more basic exploratory research to assess the degree to which novel species regulate bottom-up and/or top down control. Novel predators are expected to produce the strongest effects by decimating consumers, and leading to the blooms of primary producers. Here we show how the arrival of the invasive crab Rhithropanopeus harrisii into the Baltic Sea - a bottom-up controlled ecosystem where no equivalent predators ever existed - appeared to trigger not only strong top-down control resulting in a decline in richness and biomass of benthic invertebrates, but also an increase in pelagic nutrients and phytoplankton biomass. Thus, the addition of a novel interaction - crab predation - to an ecosystem has a potential to reduce the relative importance of bottom-up regulation, relax benthic-pelagic coupling and reallocate large amounts of nutrients from benthic to pelagic processes, resulting in a regime shift to a degraded ecosystem state.


Subject(s)
Brachyura , Ecosystem , Introduced Species , Animals , Atlantic Ocean , Biomass , Brachyura/physiology , Eutrophication , Invertebrates , Phytoplankton , Predatory Behavior
5.
J Fish Biol ; 79(1): 217-34, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21722121

ABSTRACT

In this study, fishes and habitat attributes were quantified, four times over 1 year, on three reefs within four regions encompassing a c. 6° latitudinal gradient across south-western Australia. The variability observed was partitioned at these spatio-temporal scales in relation to reef fish variables and the influence of environmental drivers quantified at local scales, i.e. at the scale of reefs (the number of small and large topographic elements, the cover of kelp, fucalean and red algae, depth and wave exposure) and at the scale of regions (mean and maximum nutrient concentrations and mean seawater temperature) with regard to the total abundance, species density, species diversity and the multivariate structure of reef fishes. Variation in reef fish species density and diversity was significant at the regional scale, whereas variation in the total abundance and assemblage structure of fishes was also significant at local scales. Spatial variation was greater than temporal variation in all cases. A systematic and gradual species turnover in assemblage structure was observed between adjacent regions across the latitudinal gradient. The cover of red algae within larger patches of brown macroalgae (a biological attribute of the reef) and the number of large topographic elements (a structural attribute of the reef) were correlated with variation observed at local scales, while seawater temperature correlated with variation at the scale of regions. In conclusion, conservation efforts on reef fishes need to incorporate processes operating at regional scales with processes that shape local reef fish communities at local scales.


Subject(s)
Biodiversity , Coral Reefs , Fishes/physiology , Analysis of Variance , Animals , Australia , Kelp , Regression Analysis , Seasons , Seawater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...