Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 59(77): 11532-11535, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37672291

ABSTRACT

A labile organoazide iron complex is reported. Under ambient conditions, the azide adduct is subject to a dissociation equilibrium in solution, yet also undergoes intramolecular C-H bond amination. Single-crystal irradiation of the azide at 80 K leads to partial N2-extrusion and formation of a putative imido iron intermediate, which was computationally identified as a highly covalent {FeNR}8 species.

2.
Inorg Chem ; 62(7): 3153-3161, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36744742

ABSTRACT

The rational design of 3d-metal-based single-molecule magnets (SMM) requires a fundamental understanding of their intrinsic electronic and structural properties and how they translate into experimentally observable features. Here, we determined the magnetic properties of the linear iron(I) silylamides K{crypt}[FeL2] and [KFeL2] (L = -N(Dipp)SiMe3; crypt = 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosan). For the former, slow-relaxation of the magnetization with a spin reversal barrier of Ueff = 152 cm-1 as well as a closed-waist magnetic hysteresis and magnetic blocking below 2.5 K are observed. For the more linear [KFeL2], in which the potassium cation is encapsulated by the aryl substituents of the amide ligands, the relaxation barrier and the blocking temperature increase to Ueff = 184 cm-1 and TB = 4.5 K, respectively. The increase is rationalized by a more pronounced axial anisotropy in [KFeL2] determined by dc-SQUID magnetometry. The effective relaxation barrier of [KFeL2] is in agreement with the energy spacing between the ground and first-excited magnetic states, as obtained by field-dependent IR-spectroscopy (178 cm-1), magnetic measurements (208 cm-1), as well as theoretical analysis (212 cm-1). In comparison with the literature, the results show that magnetic coercivity in linear iron(I) silylamides is driven by the degree of linearity in conjunction with steric encumbrance, whereas the ligand symmetry is a marginal factor.

3.
Chem Sci ; 13(46): 13872-13878, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36544743

ABSTRACT

Radical anions appear as intermediates in a variety of organic reductions and have recently garnered interest for their role as mediators for electron-driven catalysis as well as for organic electron conductor materials. Due to their unstable nature, the isolation of such organic radical anions is usually only possible by using extended aromatic systems, whereas non-aromatic unsaturated hydrocarbons have so far only been observed in situ. We herein report the first isolation, structure and spectroscopic characterization of a simple aryl substituted alkene radical anion, namely that of stilbene (1,2-diphenyl ethylene), achieved by encapsulation between two [K{18c6}] cations. The formation of the radical anion is accompanied by Z → E isomerization of the involved double bond, also on a catalytic scale. Employing the linear iron(i) complex [Fe(NR2)2]- as a reductant and coordination site also allows for this transformation, via formation of an iron(ii) bound radical anion. The use of the iron complex now also allows for Z → E isomerization of electron richer, simple alkenes bearing either mixed alkyl/aryl or even bis(alkyl) substitution.

4.
Angew Chem Int Ed Engl ; 61(42): e202210683, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36008351

ABSTRACT

Lowering the charge of Zintl anions by (element-)organic substituents allows their use as sources of (semi)metal nanostructures in common organic solvents, as realized for group 15 anions or Ge9 4- and Sn9 4- . We developed a new strategy for other anions, using low-coordinate 3d metal complexes as electrophiles. [K(crypt-222)]+ salts of (TrBi3 )2- anions dissolved in situ in Et2 O and/or THF when reacted with [Mn(hmds)2 ]. Work-up afforded soluble [K(crypt-222)]+ salts of [{(hmds)2 Mn}2 (TlBi3 )]2- (in 1), [{(hmds)2 Mn}2 (Bi2 )]2- (in 2), and [{(hmds)Mn}4 (Bi2 )2 ]2- (in 3) (crypt-222=4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane; Tr=Ga, In, Tl; hmds=N(SiMe3 )2 ), representing rare cases of Zintl clusters with open-shell metal atoms. 1 comprises the first coordination compound of the (TlBi3 )2- anion, 2 features a diamond-shaped {Pn2 M2 } unit, and 3 is a mixed-valent MnI /MnII compound. The uncommon electronic structures in 1-3 and magnetic coupling were studied by comprehensive DFT calculations.

5.
Chem Commun (Camb) ; 58(70): 9786-9789, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35971739

ABSTRACT

The isolation of the first diarsene radical anion by reduction of a neutral diarsene is presented. Comprehensive characterisation in conjunction with DFT calculations reveals unpaired spin density residing in the antibonding π*-orbital with involvement of the terphenyl ligands. First reactivity studies reveal no pronounced radical, but rather reducing properties.

6.
Chem Sci ; 13(26): 7907-7913, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35865905

ABSTRACT

Imidyl and nitrene metal species play an important role in the N-functionalisation of unreactive C-H bonds as well as the aziridination of olefines. We report on the synthesis of the trigonal imido iron complexes [Fe(NMes)L2]0,- (L = -N{Dipp}SiMe3); Dipp = 2,6-diisopropyl-phenyl; Mes = (2,4,6-trimethylphenyl) via reaction of mesityl azide (MesN3) with the linear iron precursors [FeL2]0,-. UV-vis-, EPR-, 57Fe Mössbauer spectroscopy, magnetometry, and computational methods suggest for the reduced form an electronic structure as a ferromagnetically coupled iron(ii) imidyl radical, whereas oxidation leads to mixed iron(iii) imidyl and electrophilic iron(ii) nitrene character. Reactivity studies show that both complexes are capable of H atom abstraction from C-H bonds. Further, the reduced form [Fe(NMes)L2]- reacts nucleophilically with CS2 by inserting into the imido iron bond, as well as electrophilically with CO under nitrene transfer. The neutral [Fe(NMes)L2] complex shows enhanced electrophilic behavior as evidenced by nitrene transfer to a phosphine, yet in combination with an overall reduced reactivity.

7.
Inorg Chem ; 61(20): 7794-7803, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35522526

ABSTRACT

In this report, we present intricate pathways for the synthesis of linear nickel(I) silylamide K{m}[Ni(NR2)2] (NR2 = -N(SiMe3)2). This is achieved first via the reduction of nickel(II) trisamide Li(donor)4[Ni(NR2)3] (Li(thf)x[1]) with KC8 in the presence of 18-crown-6 or crypt.222. In due course, the behavior of Li(donor)4[Ni(NR2)3] as a source of masked two-coordinate nickel(II) hexamethyldisilazanide is explored, leading to the formation of nickel(I) and nickel(II) N-donor adducts, as well as metal-metal-bonded dinickel(I) trisamide K(toluene)[Ni2(NR2)3] (K(toluene)[5]). Finally, a convenient and reliable synthesis of K{m}[Ni(NR2)2] by ligand exchange of phosphines in [Ni(NR2)(PPh3)2] with K{m}(NR2) is presented. This allows for the comprehensive analysis of its electronic properties which reveals a fluxional behavior in solution with tight anion/cation interactions.

8.
Dalton Trans ; 51(1): 179-184, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34874371

ABSTRACT

Metal carbonyl complexes are almost exclusively found in a low-spin state due to the strong-field nature of the CO ligand. Here the characterisation of highly labile three-coordinate metal(I) monocarbonyl complexes of iron and cobalt is presented. Experimental and quantum chemical examinations reveal their high-spin configuration.

9.
Chemistry ; 27(67): 16760-16767, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34569676

ABSTRACT

Carbonyl and iminyl based radical anions are reactive intermediates in a variety of transformations in organic synthesis. Herein, the isolation of ketyl, and more importantly unprecedented ketiminyl and aldiminyl radical anions coordinated to cobalt and iron complexes is presented. Insights into the electronic structure of these unusual metal bound radical anions is provided by X-Ray diffraction analysis, NMR, IR, UV/Vis and Mössbauer spectroscopy, solid and solution state magnetometry, as well as a by a detailed computational analysis. The metal bound radical anions are very reactive and facilitate the activation of intra- and intermolecular C-H bonds.

10.
Chem Commun (Camb) ; 57(82): 10751-10754, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34585677

ABSTRACT

Here we present the synthesis of a unique diferrous [2Fe-2S]0 complex with only three-coordinate iron ions via reduction of a four-coordinate diferric [2Fe-2S]2+ complex with concomitant ligand loss. The obtained compounds were thoroughly examined for their properties (e.g. by 57Fe Mössbauer spectroscopy and magnetic susceptibility measurements). Facile cleavage of the [2Fe-2S] rhombus, commonly seen as rather stable, by CS2 is also shown.

11.
Dalton Trans ; 50(31): 10947-10963, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34318833

ABSTRACT

Herein we describe the synthesis and characterization of a variety of new quasilinear metal(i/ii) silylamides of the type [M(N(Dipp)SiR3)2]0,- (M = Cr-Co) with different silyl substituents (SiR3 = SiPh3-nMen (n = 1-3), SiMe2(allyl)). By comparison of the solid state structures we show that in the case of phenyl substituents secondary metal-ligand interactions are suppressed upon reduction of the metal. Introduction of an allyl substituted silylamide gives divalent complexes with additional metal-π-alkene interactions with only weak activation of the C[double bond, length as m-dash]C bond but substantial bending of the principal N-M-N axis. 1e--reduction makes cobalt a more strongly bound alkene substituent, whereas for chromium, reduction and intermolecular dimerisation of the allyl unit are observed. It thus indicates that the general view of low-coordinate 3d-metal ions as electron deficient seems not to apply to anionic metal(i) complexes. Additionally, the obtained cobalt(i) complexes are reacted with an aryl azide giving trigonal imido metal complexes. These can be regarded as rare examples of high-spin imido cobalt compounds from their structural and solution magnetic features.

12.
Angew Chem Int Ed Engl ; 60(28): 15376-15380, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33977634

ABSTRACT

We report on the synthesis of a variety of trigonal imido cobalt complexes [Co(NAryl)L2 ]- , (L=N(Dipp)SiMe3 ), Dipp=2,6-diisopropylphenyl) with very long Co-NAryl bonds of around 1.75 Å. Their electronic structure was interrogated using a variety of physical and spectroscopic methods such as EPR or X-Ray absorption spectroscopy which leads to their description as highly unusual imidyl cobalt complexes. Computational analyses corroborate these findings and further reveal that the high-spin state is responsible for the imidyl character. Exchange of the Dipp substituent on the imide by the smaller mesityl function (2,4,6-trimethylphenyl) effectuates the unexpected Me3 Si shift from the ancillary ligand set to the imidyl nitrogen, revealing a highly reactive, nucleophilic character of the imidyl unit.

13.
Dalton Trans ; 50(14): 4890-4903, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33877186

ABSTRACT

The synthesis and characterization of neutral quasilinear 3d-metal(i) complexes of chromium to cobalt of the type [KM(N(Dipp)SiMe3)2] (Dipp = 2,6-di-iso-propylphenyl) are reported. In solid state these metal(i) complexes either occur as isolated molecules (Co) or are part of a potassium ion linked 1D-coordination polymer (Cr-Fe). In solution the potassium cation is either ligated within the ligand sphere of the metal silylamide or is separated from the complex depending on the solvent. For iron, we showcase that it is possible to use sodium or lithium metal for the reduction of the metal(ii) precursor. However, in these cases the resulting iron(i) complexes can only be isolated upon cation separation using an appropriate crown-ether. Further, the neutral metal(i) complexes are used to introduce NBu4+ as an organic cation in the case of cobalt and iron. The impact of the intramolecular cation complexation was further demonstrated upon reaction with diphenyl acetylene which leads to bond formation processes and redox disproportionation instead of η2-alkyne complex formation.

14.
Chemistry ; 27(20): 6348-6353, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33512018

ABSTRACT

A [Fe-S-Fe] subunit with a single sulfide bridging two low-coordinate iron ions is the supposed active site of the iron-molybdenum co-factor (FeMoco) of nitrogenase. Here we report a dinuclear monosulfido bridged diiron(II) complex with a similar complex geometry that can be oxidized stepwise to diiron(II/III) and diiron(III/III) complexes while retaining the [Fe-S-Fe] core. The series of complexes has been characterized crystallographically, and electronic structures have been studied using, inter alia, 57 Fe Mössbauer spectroscopy and SQUID magnetometry. Further, cleavage of the [Fe-S-Fe] unit by CS2 is presented.

15.
Inorg Chem ; 59(14): 9521-9537, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32603097

ABSTRACT

This report describes a series of rare low-coordinate 3d transition metal alkyne complexes resulting from the reaction of quasi-linear metal(I) silylamides, K{18c6}[MX2] (18c6 = 18-crown-6; X = -N(SiMe3)2), -N(Dipp)SiMe3; Dipp = 2,6-diisopropylphenyl), of chromium, manganese, iron, and cobalt with aliphatic and aromatic alkynes. We evaluated the interaction of alkynes with quasi-linear metal complexes in dependence of the metal and the alkyne substituents. Whereas only a weak and reversible alkyne coordination is observed for cobalt, the formation of side-on alkyne complexes of the type [M(L2)(η2-RCCR)]- takes place readily for iron. In the case of manganese, we report the first example of a low-coordinate manganese alkyne complexes and, depending on the substrate, unique examples for the manganese mediated reduction of the alkyne to their dianions or even alkyne trimerization. For chromium, alkyne coordination or reduction to the respective alkyne dianions is also observed. Computational analysis of the series of [M(N(SiMe3)2)2(η2-PhCCPh)]- complexes (Cr-Co) using DFT and CASSCF methods reveals a partial reduction of the alkyne by the metal. This leads to the description of the electronic situation of all these complexes as formal metal(II) bound alkynyl radical anions. In the case of chromium, indications for further contributions of a metal(III) cyclopropene resonance structure were found. The computational analysis rationalizes the facile reduction to bis-metalated alkene dianions due to the radical anion character of the alkyne π-complexes.

16.
Angew Chem Int Ed Engl ; 59(22): 8527-8531, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32119164

ABSTRACT

The 3d-metal mediated nitrene transfer is under intense scrutiny due to its potential as an atom economic and ecologically benign way for the directed amination of (un)functionalised C-H bonds. Here we present the isolation and characterisation of a rare, trigonal imido cobalt(III) complex, which bears a rather long cobalt-imido bond. It can cleanly cleave strong C-H bonds with a bond dissociation energy of up to 92 kcal mol-1 in an intermolecular fashion, unprecedented for imido cobalt complexes. This resulted in the amido cobalt(II) complex [Co(hmds)2 (NHt Bu)]- . Kinetic studies on this reaction revealed an H atom transfer mechanism. Remarkably, the cobalt(II) amide itself is capable of mediating H atom abstraction or stepwise proton/electron transfer depending on the substrate. A cobalt-mediated catalytic application for substrate dehydrogenation using an organo azide is presented.

17.
Inorg Chem ; 55(21): 10968-10977, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27783500

ABSTRACT

A family of four-coordinate FeII complexes formed with N,N'-chelating amido-pyridine ligands was synthesized, and their magnetic properties were investigated. These distorted tetrahedral complexes exhibit significant magnetic anisotropy with zero-field splitting parameter D ranging between -17 and -12 cm-1. Ab initio calculations enabled identification of the structural factors that control the nature of the magnetic anisotropy and the rationalization of the variation of D in these complexes. It is shown that a reduced N-Fe-N angle involving the chelating nitrogen atoms of the ligands is at the origin of the negative D value and that the torsion between the two N-Fe-N planes imposed by steric hindrances further increases the |D| value. Field-induced slow relaxation of magnetization was observed for the three compounds, and a single-molecule magnet behavior with an energy barrier for magnetization flipping (Ueff) of 27 cm-1 could be evidenced for one of them.

18.
Chemistry ; 22(5): 1668-74, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26682930

ABSTRACT

Anionic two-coordinate complexes of first-row transition-metal(I) centres are rare molecules that are expected to reveal new magnetic properties and reactivity. Recently, we demonstrated that a N(SiMe3)2(-) ligand set, which is unable to prevent dimerisation or extraneous ligand coordination at the +2 oxidation state of iron, was nonetheless able to stabilise anionic two-coordinate Fe(I) complexes even in the presence of a Lewis base. We now report analogous Cr(I) and Co(I) complexes with exclusively this amido ligand and the isolation of a [Mn(I){N(SiMe3)2}2]2(2-) dimer that features a Mn-Mn bond. Additionally, by increasing the steric hindrance of the ligand set, the two-coordinate complex [Mn(I){N(Dipp)(SiMe3)}2](-) was isolated (Dipp=2,6-iPr2-C6H3). Characterisation of these compounds by using X-ray crystallography, NMR spectroscopy, and magnetic susceptibility measurements is provided along with ligand-field analysis based on CASSCF/NEVPT2 ab initio calculations.

19.
J Am Chem Soc ; 137(30): 9563-6, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26203769

ABSTRACT

We report herein the use of the (dihydrido)iron catalyst, Fe(H)2(dmpe)2, for the selective reduction of CO2 into either bis(boryl)acetal or methoxyborane depending on the hydroborane used as a reductant. In a one-pot two-step procedure, the in situ generated bis(boryl)acetal was shown to be a reactive and versatile source of methylene to create new C-N but also C-O and C-C bonds.

20.
J Am Chem Soc ; 137(12): 4062-5, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25782140

ABSTRACT

Well-defined iron bis(diphosphine) complexes are active catalysts for the dehydrogenative C-H borylation of aromatic and heteroaromatic derivatives with pinacolborane. The corresponding borylated compounds were isolated in moderate to good yields (25-73%) with a 5 mol% catalyst loading under UV irradiation (350 nm) at room temperature. Stoichiometric reactivity studies and isolation of an original trans-hydrido(boryl)iron complex, Fe(H)(Bpin)(dmpe)2, allowed us to propose a mechanism showing the role of some key catalytic species.

SELECTION OF CITATIONS
SEARCH DETAIL
...