Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 7(2)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35735594

ABSTRACT

Existing research on mycelium-based materials recognizes the binding capacity of fungal hyphae. Fungal hyphae digest and bond to the surface of the substrate, form entangled networks, and enhance the mechanical strength of mycelium-based composites. This investigation was driven by the results of an ongoing project, where we attempt to provide basic concepts for a broad application of a mycelium and chipped wood composite for building components. Simultaneously, we further explore the binding capacity of mycelium and chipped wood composites with a series of experiments involving different mechanical interlocking patterns. Although the matrix material was analyzed on a micro-scale, the samples were developed on a meso-scale to enhance the bonding surface. The meso-scale allows exploring the potential of the bio-based material for use in novel construction systems. The outcome of this study provides a better understanding of the material and geometrical features of mycelium-based building elements.

2.
Eng Life Sci ; 21(3-4): 270-282, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33716624

ABSTRACT

The replacement of potentially hazardous synthetic dyes with natural dyes and pigments are of great interest for a sustainable economy. In order to obtain cost-efficient, environmentally friendly and competitive products, improvements in the cultivation and extraction of pigment-producing organisms and in dyeing processes are necessary. In our study, we were able to scale up the production of xylindein by Chlorociboria aeruginascens from 3 to 70 L bioreactor cultivations. We have identified important bioprocess parameters like low shear stress (150 rpm, tip speed <0.5 m/s) for optimal pigment yield (4.8 mg/L/d). Additionally, we have demonstrated the potential of laetiporic acid production by Laetiporus sulphureus in various cultivation systems and media, achieving dried biomass concentrations of almost 10 g/L with a 7 L bioreactor cultivation after 17 days. Extractions performed at 70°C and 15 min incubation time showed optimal results. To the best of our knowledge, we have described for the first time the use of this pigment in silk dyeing, which results in a brilliant hue that cannot easily be produced by other natural pigments.

3.
Materials (Basel) ; 13(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066026

ABSTRACT

Natural fibres have a high potential as reinforcement of polymer matrices, as they combine a high specific strength and modulus with sustainable production and reasonable prices. Modifying the fibre surface is a common method to increase the adhesion and thereby enhance the mechanical properties of composites. In this study, a novel sustainable surface treatment is presented: the fungal enzyme laccase was utilised with the aim of covalently binding the coupling agent dopamine to flax fibre surfaces. The goal is to improve the interfacial strength towards an epoxy matrix. SEM and AFM micrographs showed that the modification changes the surface morphology, indicating a deposition of dopamine on the surface. Fibre tensile tests, which were performed to check whether the fibre structure was damaged during the treatment, showed that no decrease in tensile strength or modulus occurred. Single fibre pullout tests showed a 30% increase in interfacial shear strength (IFSS) due to the laccase-mediated bonding of the coupling agent dopamine. These results demonstrate that a laccase + dopamine treatment modifies flax fibres sustainably and increases the interfacial strength towards epoxy.

4.
J Fungi (Basel) ; 5(2)2019 Jun 08.
Article in English | MEDLINE | ID: mdl-31181797

ABSTRACT

The soft rot fungus Chlorociboria aeruginascens produces a blue-green pigment xylindein, which is of considerable interest for various applications such as in the veneer industry or in organic semiconductors. To understand the fungal growth as well as pigment production of C. aeruginascens, several studies were performed, the results of which are presented here. These studies investigated various growth conditions such as temperature, pH value, oxygen level and light intensity. It was observed that the formation of xylindein by C. aeruginascens decoupled from growth. In the primary metabolismus, the uncolored biomass is formed. Pigment production took place within the secondary metabolism, while biomass growth as well as pigment production depended on various growth conditions. It was also found that certain conditions encourage the switch in metabolism, leading to pigment production.

5.
J Fungi (Basel) ; 5(2)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100858

ABSTRACT

The blue-green pigment xylindein, produced by the soft rot fungus Chlorociboria aeruginascens, is of considerable interest for various applications such as the veneer industry or organic semiconductors. The studies presented were performed in order to understand the fungal growth as well as the pigment production of C. aeruginascens. Therefore, various nutrient compositions were investigated. As a result, observations of the formation of xylindein through C. aeruginascens decoupling from growth were made. In the primary metabolism the uncolored biomass is formed. Various carbohydrates were determined as nutrients for the fungus and as a nitrogen source it was observed that the fungus prefers the complex organic nitrogen source, that being yeast extract. Furthermore, it was discovered that the ratio between carbohydrate and nitrogen sources encourages the switch of the metabolism and therewith the production of the blue-green pigment xylindein.

6.
Adv Biochem Eng Biotechnol ; 169: 51-81, 2019.
Article in English | MEDLINE | ID: mdl-30796505

ABSTRACT

Fungi have a diverse spectrum of extracellular enzymes. In nature, extracellular enzymes primarily serve to procure nutrients for the survival and growth of the fungi. Complex polymers such as lignocellulose and starch as well as proteins and fats are broken down into their basic building blocks by extracellular enzymes such as amylases, proteases, lipases, xylanases, laccases, and many more.The abilities of these enzymes are made use of in diverse areas of industry, including food technology, textiles, and pharmaceuticals, and they have become indispensable for today's technology. Enzyme production is usually carried out using submerged fermentation (SmF). However, as part of the search for more sustainable uses of raw materials, solid-state fermentation (SSF) has become the focus of research.The rate of enzyme formation depends on different factors, for example, microorganism, temperature, or oxygen supply. However, one of the most important factors in enzyme production is the choice of substrate, which varies depending on the desired target enzyme. Substrates with proven effectiveness include wheat bran and straw, but unusual agricultural residues such as forage cactus pears and orange peels have surprisingly positive effects on enzyme formation as well.This review gives an overview of various technically relevant enzymes produced by filamentous fungi and suitable substrates for the production of the enzymes by SSF. Graphical Abstract.


Subject(s)
Bacteria , Enzymes , Fermentation , Fungi , Industrial Microbiology , Bacterial Proteins/metabolism , Enzymes/metabolism , Fungal Proteins/metabolism , Industrial Microbiology/instrumentation , Industrial Microbiology/methods
7.
Sci Total Environ ; 621: 612-625, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29195208

ABSTRACT

Endocrine-active substances can adversely impact the aquatic ecosystems. A special emphasis is laid, among others, on the effects of estrogens and estrogen mimicking compounds. Effect-based screening methods like in vitro bioassays are suitable tools to detect and quantify endocrine activities of known and unknown mixtures. This study describes the validation of the Arxula-Yeast Estrogen Screen (A-YES®) assay, an effect-based method for the detection of the estrogenic potential of water and waste water. This reporter gene assay, provided in ready to use format, is based on the activation of the human estrogen receptor alpha. The user-friendly A-YES® enables inexperienced operators to rapidly become competent with the assay. Fourteen laboratories from four countries with different training levels analyzed 17ß-estradiol equivalent concentrations (EEQ) in spiked and unspiked waste water effluent and surface water samples, in waste water influent and spiked salt water samples and in a mixture of three bisphenols. The limit of detection (LOD) for untreated samples was 1.8ng/L 17ß-estradiol (E2). Relative repeatability and reproducibility standard deviation for samples with EEQ above the LOD (mean EEQ values between 6.3 and 20.4ng/L) ranged from 7.5 to 21.4% and 16.6 to 28.0%, respectively. Precision results are comparable to other frequently used analytical methods for estrogens. The A-YES® has been demonstrated to be an accurate, precise and robust bioassay. The results have been included in the ISO draft standard. The assay was shown to be applicable for testing of typical waste water influent, effluent and saline water. Other studies have shown that the assay can be used with enriched samples, which lower the LOD to the pg/L range. The validation of the A-YES® and the development of a corresponding international standard constitute a step further towards harmonized and reliable bioassays for the effect-based analysis of estrogens and estrogen-like compounds in water samples.


Subject(s)
Environmental Monitoring/methods , Estrogen Receptor alpha/metabolism , Estrogens/analysis , Saccharomycetales , Water Pollutants, Chemical/analysis , Biological Assay , Endocrine Disruptors , Estradiol/analysis , Humans , Limit of Detection , Phenols/analysis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...