Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS One ; 18(3): e0281210, 2023.
Article in English | MEDLINE | ID: mdl-36893197

ABSTRACT

The contribution and regulation of various CD4+ T cell lineages that occur with remitting vs progressive courses in sarcoidosis are poorly understood. We developed a multiparameter flow cytometry panel to sort these CD4+ T cell lineages followed by measurement of their functional potential using RNA-sequencing analysis at six-month intervals across multiple study sites. To obtain good quality RNA for sequencing, we relied on chemokine receptor expression to identify and sort lineages. To minimize gene expression changes induced by perturbations of T cells and avoid protein denaturation caused by freeze/thaw cycles, we optimized our protocols using freshly isolated samples at each study site. To accomplish this study, we had to overcome significant standardization challenges across multiple sites. Here, we detail standardization considerations for cell processing, flow staining, data acquisition, sorting parameters, and RNA quality control analysis that were performed as part of the NIH-sponsored, multi-center study, BRonchoscopy at Initial sarcoidosis diagnosis Targeting longitudinal Endpoints (BRITE). After several rounds of iterative optimization, we identified the following aspects as critical for successful standardization: 1) alignment of PMT voltages across sites using CS&T/rainbow bead technology; 2) a single template created in the cytometer program that was used by all sites to gate cell populations during data acquisition and cell sorting; 3) use of standardized lyophilized flow cytometry staining cocktails to reduce technical error during processing; 4) development and implementation of a standardized Manual of Procedures. After standardization of cell sorting, we were able to determine the minimum number of sorted cells necessary for next generation sequencing through analysis of RNA quality and quantity from sorted T cell populations. Overall, we found that implementing a multi-parameter cell sorting with RNA-seq analysis clinical study across multiple study sites requires iteratively tested standardized procedures to ensure comparable and high-quality results.


Subject(s)
RNA , Transcriptome , Flow Cytometry/methods , Cell Separation , Reference Standards
2.
ACS Appl Bio Mater ; 5(11): 5104-5112, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36264000

ABSTRACT

The current state-of-the-art in bacteriophage (phage) immobilization onto magnetic particles is limited to techniques that are less expensive and/or facile but nonspecific or those that are more expensive and/or complicated but ensure capsid-down orientation of the phages, as necessary to preserve infectivity and performance in subsequent applications (e.g., therapeutics, detection). These cost, complexity, and effectiveness limitations constitute the major hurdles that limit the scale-up of phage-based strategies and thus their accessibility in low-resource settings. Here, we report a plasmid-based technique that incorporates a silica-binding protein, L2, into the T7 phage capsid, during viral assembly, with and without inclusion of a flexible linker peptide, allowing for targeted binding of the phage capsid to silica without requiring the direct modification of the phage genome. L2-tagged phages were then immobilized onto silica-coated magnetic nanoparticles. Inclusion of the flexible linker between the phage capsid protein and the L2 protein improved immobilization density compared to both wild type T7 phages and L2-tagged phages without the flexible linker. Taken together, this work demonstrates phage capsid modification without engineering the phage genome, which provides an important step toward reducing the cost and increasing the specificity/directionality of phage immobilization methods and could be more broadly applied in the future for other phages for a range of other capsid tags and nanomaterials.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Capsid , Capsid Proteins/genetics , Virus Assembly , Silicon Dioxide
3.
BMJ Open ; 11(11): e056841, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34753769

ABSTRACT

INTRODUCTION: Sarcoidosis is a multiorgan granulomatous disorder thought to be triggered and influenced by gene-environment interactions. Sarcoidosis affects 45-300/100 000 individuals in the USA and has an increasing mortality rate. The greatest gap in knowledge about sarcoidosis pathobiology is a lack of understanding about the underlying immunological mechanisms driving progressive pulmonary disease. The objective of this study is to define the lung-specific and blood-specific longitudinal changes in the adaptive immune response and their relationship to progressive and non-progressive pulmonary outcomes in patients with recently diagnosed sarcoidosis. METHODS AND ANALYSIS: The BRonchoscopy at Initial sarcoidosis diagnosis Targeting longitudinal Endpoints study is a US-based, NIH-sponsored longitudinal blood and bronchoscopy study. Enrolment will occur over four centres with a target sample size of 80 eligible participants within 18 months of tissue diagnosis. Participants will undergo six study visits over 18 months. In addition to serial measurement of lung function, symptom surveys and chest X-rays, participants will undergo collection of blood and two bronchoscopies with bronchoalveolar lavage separated by 6 months. Freshly processed samples will be stained and flow-sorted for isolation of CD4 +T helper (Th1, Th17.0 and Th17.1) and T regulatory cell immune populations, followed by next-generation RNA sequencing. We will construct bioinformatic tools using this gene expression to define sarcoidosis endotypes that associate with progressive and non-progressive pulmonary disease outcomes and validate the tools using an independent cohort. ETHICS AND DISSEMINATION: The study protocol has been approved by the Institutional Review Boards at National Jewish Hospital (IRB# HS-3118), University of Iowa (IRB# 201801750), Johns Hopkins University (IRB# 00149513) and University of California, San Francisco (IRB# 17-23432). All participants will be required to provide written informed consent. Findings will be disseminated via journal publications, scientific conferences, patient advocacy group online content and social media platforms.


Subject(s)
Sarcoidosis, Pulmonary , Sarcoidosis , Bronchoalveolar Lavage Fluid , Bronchoscopy , Humans , Multicenter Studies as Topic , Observational Studies as Topic , T-Lymphocytes, Regulatory , Th17 Cells
4.
Front Microbiol ; 12: 741304, 2021.
Article in English | MEDLINE | ID: mdl-34975779

ABSTRACT

Phages have demonstrated significant potential as therapeutics in bacterial disease control and as diagnostics due to their targeted bacterial host range. Host range has typically been defined by plaque assays; an important technique for therapeutic development that relies on the ability of a phage to form a plaque upon a lawn of monoculture bacteria. Plaque assays cannot be used to evaluate a phage's ability to recognize and adsorb to a bacterial strain of interest if the infection process is thwarted post-adsorption or is temporally delayed, and it cannot highlight which phages have the strongest adsorption characteristics. Other techniques, such as classic adsorption assays, are required to define a phage's "adsorptive host range." The issue shared amongst all adsorption assays, however, is that they rely on the use of a complete bacteriophage and thus inherently describe when all adsorption-specific machinery is working together to facilitate bacterial surface adsorption. These techniques cannot be used to examine individual interactions between a singular set of a phage's adsorptive machinery (like long tail fibers, short tail fibers, tail spikes, etc.) and that protein's targeted bacterial surface receptor. To address this gap in knowledge we have developed a high-throughput, filtration-based, bacterial binding assay that can evaluate the adsorptive capability of an individual set of a phage's adsorption machinery. In this manuscript, we used a fusion protein comprised of an N-terminal bioluminescent tag translationally fused to T4's long tail fiber binding tip (gp37) to evaluate and quantify gp37's relative adsorptive strength against the Escherichia coli reference collection (ECOR) panel of 72 Escherichia coli isolates. Gp37 could adsorb to 61 of the 72 ECOR strains (85%) but coliphage T4 only formed plaques on 8 of the 72 strains (11%). Overlaying these two datasets, we were able to identify ECOR strains incompatible with T4 due to failed adsorption, and strains T4 can adsorb to but is thwarted in replication at a step post-adsorption. While this manuscript only demonstrates our assay's ability to characterize adsorptive capabilities of phage tail fibers, our assay could feasibly be modified to evaluate other adsorption-specific phage proteins.

5.
J Vet Diagn Invest ; 32(6): 793-801, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31752630

ABSTRACT

Mycoplasma cynos is recognized as an emerging causative pathogen of canine infectious respiratory disease (CIRD) worldwide. We developed a new open-source real-time PCR (rtPCR) assay for M. cynos that performs well under standard rtPCR conditions. Primers and probes were designed to target the M. cynos tuf gene. Reaction efficiencies for the M. cynos tuf gene assay on 2 platforms were based on amplification of standard curves spanning 8 orders of magnitude: ABI 7500 platform, 94.3-97.9% (r2 ≥ 0.9935); QuantStudio OpenArray platform, 119.1-122.5% (r2 = 0.9784). The assay performed very well over a range of template input, from 109 copies to the lower limit of quantification at 4 copies of the M. cynos genome on the ABI 7500 platform. Diagnostic performance was estimated by comparison with an in-house legacy assay on clinical specimens as well as testing isolates that were characterized previously by intergenic spacer region (ISR) sequencing. Exclusivity was established by testing 12 other Mycoplasma species. To substantiate the high specificity of the M. cynos tuf gene assay, sequence confirmation was performed on ISR PCR amplicons obtained from clinical specimens. One ISR amplicon sequence revealed M. mucosicanis rather than M. cynos. The complete protocol of the newly developed M. cynos tuf assay is provided to facilitate assay harmonization.


Subject(s)
Dog Diseases/microbiology , Mycoplasma Infections/veterinary , Mycoplasma/isolation & purification , Respiratory Tract Infections/veterinary , Animals , DNA Primers , Dog Diseases/diagnosis , Dogs , Mycoplasma Infections/diagnosis , Real-Time Polymerase Chain Reaction/veterinary , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Sensitivity and Specificity
6.
Biofouling ; 35(7): 785-795, 2019 08.
Article in English | MEDLINE | ID: mdl-31550928

ABSTRACT

Food wasted due to food spoilage remains a global challenge to the environmental sustainability and security of food supply. In food manufacturing, post-processing contamination of food can occur due to persistent bacterial biofilms, which can be resistant to conventional cleaning and sanitization. The objective was to characterize the efficacy of a polymeric coating in reducing Pseudomonas aeruginosa biofilm establishment and facilitating its removal. Viable cell density of a 48 h biofilm was reduced by 2.10 log cfu cm-2 on the coated surface, compared to native polypropylene. Confocal laser scanning and electron microscopy indicated reductions in mature biofilm viability and thickness on the coated material. The antifouling coating improved cleanability, with ∼2.5 log cfu cm-2 of viable cells remaining after 105 min cleaning by water at 65 °C, compared to 4.5 log cfu cm-2 remaining on native polypropylene. Such coatings may reduce the persistence of biofilms in food processing environments, in support of reducing food spoilage and waste.


Subject(s)
Biofilms , Pseudomonas aeruginosa/physiology , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects
7.
BMC Microbiol ; 12: 293, 2012 Dec 18.
Article in English | MEDLINE | ID: mdl-23244770

ABSTRACT

BACKGROUND: Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. RESULTS: Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. CONCLUSION: This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Streptococcus/genetics , Animals , Cattle , Computational Biology , Evolution, Molecular , Interspersed Repetitive Sequences , Milk/microbiology , Molecular Sequence Data , Phylogeny , Streptococcus/isolation & purification , Virulence Factors/genetics
8.
J Virol ; 85(1): 296-304, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20980509

ABSTRACT

Mammalian orthoreoviruses induce apoptosis in vivo and in vitro; however, the specific mechanism by which apoptosis is induced is not fully understood. Recent studies have indicated that the reovirus outer capsid protein µ1 is the primary determinant of reovirus-induced apoptosis. Ectopically expressed µ1 induces apoptosis and localizes to intracellular membranes. Here we report that ectopic expression of µ1 activated both the extrinsic and intrinsic apoptotic pathways with activation of initiator caspases-8 and -9 and downstream effector caspase-3. Activation of both pathways was required for µ1-induced apoptosis, as specific inhibition of either caspase-8 or caspase-9 abolished downstream effector caspase-3 activation. Similar to reovirus infection, ectopic expression of µ1 caused release into the cytosol of cytochrome c and smac/DIABLO from the mitochondrial intermembrane space. Pancaspase inhibitors did not prevent cytochrome c release from cells expressing µ1, indicating that caspases were not required. Additionally, µ1- or reovirus-induced release of cytochrome c occurred efficiently in Bax(-/-)Bak(-/-) mouse embryonic fibroblasts (MEFs). Finally, we found that reovirus-induced apoptosis occurred in Bax(-/-)Bak(-/-) MEFs, indicating that reovirus-induced apoptosis occurs independently of the proapoptotic Bcl-2 family members Bax and Bak.


Subject(s)
Apoptosis/physiology , Capsid Proteins/metabolism , Mammalian orthoreovirus 3/pathogenicity , Orthoreovirus, Mammalian/pathogenicity , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , Animals , CHO Cells , Capsid Proteins/genetics , Capsid Proteins/pharmacology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspases/genetics , Caspases/metabolism , Cell Line , Cricetinae , Cricetulus , Cytochromes c/genetics , Cytochromes c/metabolism , Cytosol/metabolism , Fibroblasts/virology , HeLa Cells , Humans , Intracellular Membranes/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics
9.
NeuroRx ; 3(3): 327-35, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16815216

ABSTRACT

Two-dimensional protein electrophoresis (2-DE) has undergone many technical improvements in the past 30 years, resulting in an analytical method that is unparalleled in the resolution of complex protein mixtures and capable of quantifying changes in protein expression from a wide variety of tissues and samples. The technique has been applied in many studies of neurologic disease to identify changes in spot patterns that correlate with disease. The true power of the technique emerges when it is coupled to state-of-the-art methods in mass spectrometry, which enable identification of the protein or proteins contained within a spot of interest on a 2-DE map. Investigators have successfully applied the technique to gain improved understanding of neurologic disease mechanisms in humans and in animal models and to discover biomarkers that are useful in the clinical setting. An important extension to these efforts that has not been realized thus far is the desire to profile changes in protein expression that result from therapy to help relate disease-modifying effects at the molecular level with clinical outcomes. Here we review the major advances in 2-DE methods and discuss specific examples of its application in the study of neurologic diseases.


Subject(s)
Biomarkers , Electrophoresis, Gel, Two-Dimensional/methods , Nervous System Diseases , Proteomics , Animals , Humans , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Protein Array Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...