Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Cureus ; 15(9): e45316, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37846245

ABSTRACT

The posterior compartment of the leg typically contains three muscles in the superficial flexor group: the gastrocnemius, plantaris, and soleus. The gastrocnemius has medial and lateral heads (MH and LH) that originate from the medial and lateral condyles of the femur, respectively. However, a third head (TH) of the gastrocnemius, is a rare accessory muscle bundle of the gastrocnemius muscle that covers the surface of the popliteal fossa. Bilateral THs of gastrocnemius were identified in a 67-year-old male during a routine educational cadaveric dissection. Both gastrocnemius TH muscles consisted of a superficial belly with distinct neurovasculature heads and originated from the lateral condyle of the femur and inserted into the Achilles tendon. To our knowledge, the co-existence of bilateral gastrocnemius TH muscles has only been reported once. The male donor was found to exhibit an anatomical anomaly and could be clinically underdiagnosed due to its clinically silent nature and the lack of reports. Insight into the potential implications of bilateral and unilateral gastrocnemius TH and identification during clinical evaluation offers a path for future research to better identify and manage cases of gastrocnemius TH and its effects.

2.
Hum Mol Genet ; 33(1): 12-32, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37712894

ABSTRACT

Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.


Subject(s)
Proteome , Rett Syndrome , Animals , Female , Humans , Male , Mice , Brain/metabolism , Disease Models, Animal , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Proteome/genetics , Proteome/metabolism , Rett Syndrome/genetics , Rett Syndrome/metabolism
3.
Sci Adv ; 9(33): eadh0558, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37585521

ABSTRACT

The 1.6-megabase deletion at chromosome 3q29 (3q29Del) is the strongest identified genetic risk factor for schizophrenia, but the effects of this variant on neurodevelopment are not well understood. We interrogated the developing neural transcriptome in two experimental model systems with complementary advantages: isogenic human cortical organoids and isocortex from the 3q29Del mouse model. We profiled transcriptomes from isogenic cortical organoids that were aged for 2 and 12 months, as well as perinatal mouse isocortex, all at single-cell resolution. Systematic pathway analysis implicated dysregulation of mitochondrial function and energy metabolism. These molecular signatures were supported by analysis of oxidative phosphorylation protein complex expression in mouse brain and assays of mitochondrial function in engineered cell lines, which revealed a lack of metabolic flexibility and a contribution of the 3q29 gene PAK2. Together, these data indicate that metabolic disruption is associated with 3q29Del and is conserved across species.


Subject(s)
Intellectual Disability , Neocortex , Schizophrenia , Child , Humans , Animals , Mice , Aged , Schizophrenia/genetics , Chromosome Deletion , Developmental Disabilities/complications , Developmental Disabilities/genetics
4.
Elife ; 122023 05 12.
Article in English | MEDLINE | ID: mdl-37171075

ABSTRACT

Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer's disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.


Subject(s)
Apolipoprotein E4 , Mitochondria , Animals , Humans , Mice , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Astrocytes/metabolism , Genotype , Mitochondria/metabolism , Mitochondria/pathology
5.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37066332

ABSTRACT

Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.

6.
bioRxiv ; 2023 May 26.
Article in English | MEDLINE | ID: mdl-36747819

ABSTRACT

Recent advances in the genetics of schizophrenia (SCZ) have identified rare variants that confer high disease risk, including a 1.6 Mb deletion at chromosome 3q29 with a staggeringly large effect size (O.R. > 40). Understanding the impact of the 3q29 deletion (3q29Del) on the developing CNS may therefore lead to insights about the pathobiology of schizophrenia. To gain clues about the molecular and cellular perturbations caused by the 3q29 deletion, we interrogated transcriptomic effects in two experimental model systems with complementary advantages: isogenic human forebrain cortical organoids and isocortex from the 3q29Del mouse model. We first created isogenic lines by engineering the full 3q29Del into an induced pluripotent stem cell line from a neurotypical individual. We profiled transcriptomes from isogenic cortical organoids that were aged for 2 months and 12 months, as well as day p7 perinatal mouse isocortex, all at single cell resolution. Differential expression analysis by genotype in each cell-type cluster revealed that more than half of the differentially expressed genes identified in mouse cortex were also differentially expressed in human cortical organoids, and strong correlations were observed in mouse-human differential gene expression across most major cell-types. We systematically filtered differentially expressed genes to identify changes occurring in both model systems. Pathway analysis on this filtered gene set implicated dysregulation of mitochondrial function and energy metabolism, although the direction of the effect was dependent on developmental timepoint. Transcriptomic changes were validated at the protein level by analysis of oxidative phosphorylation protein complexes in mouse brain tissue. Assays of mitochondrial function in human heterologous cells further confirmed robust mitochondrial dysregulation in 3q29Del cells, and these effects are partially recapitulated by ablation of the 3q29Del gene PAK2 . Taken together these data indicate that metabolic disruption is associated with 3q29Del and is conserved across species. These results converge with data from other rare SCZ-associated variants as well as idiopathic schizophrenia, suggesting that mitochondrial dysfunction may be a significant but overlooked contributing factor to the development of psychotic disorders. This cross-species scRNA-seq analysis of the SCZ-associated 3q29 deletion reveals that this copy number variant may produce early and persistent changes in cellular metabolism that are relevant to human neurodevelopment.

7.
STAR Protoc ; 3(2): 101334, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35496782

ABSTRACT

This protocol describes how inductively coupled plasma mass spectrometry (ICP-MS) can quantify metals, sulfur, and phosphorus present in biological specimens. The high sensitivity of ICP-MS enables detection of these elements at very low concentrations, and absolute quantification is achieved with standard curves. Sulfur or phosphorus standardization reduces variability that arises because of slight differences in sample composition. This protocol bypasses challenges because of limited sample amounts and facilitates studies examining the biological roles of metals in health and disease. For complete details on the use and execution of this protocol, please refer to Hartwig et al. (2020).


Subject(s)
Phosphorus , Sulfur , Mass Spectrometry/methods , Metals/analysis , Phosphorus/analysis , Spectrum Analysis , Sulfur/analysis
8.
J Neurosci ; 41(31): 6596-6616, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34261699

ABSTRACT

Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.


Subject(s)
Developmental Disabilities , Mitochondria/physiology , Mitochondrial Proteins/genetics , Organic Anion Transporters/genetics , Proteostasis/genetics , Ribonucleoproteins/genetics , Ribosomal Proteins/genetics , Animals , Cell Line , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Developmental Disabilities/physiopathology , Drosophila , Gene Expression Regulation/genetics , Humans , Neurogenesis/physiology , Protein Biosynthesis/genetics , Rats , Rats, Sprague-Dawley , Ribosomes/physiology
9.
eNeuro ; 8(4)2021.
Article in English | MEDLINE | ID: mdl-34312306

ABSTRACT

Mitochondrial composition varies by organ and their constituent cell types. This mitochondrial diversity likely determines variations in mitochondrial function. However, the heterogeneity of mitochondria in the brain remains underexplored despite the large diversity of cell types in neuronal tissue. Here, we used molecular systems biology tools to address whether mitochondrial composition varies by brain region and neuronal cell type in mice. We reasoned that proteomics and transcriptomics of microdissected brain regions combined with analysis of single-cell mRNA sequencing (scRNAseq) could reveal the extent of mitochondrial compositional diversity. We selected nuclear encoded gene products forming complexes of fixed stoichiometry, such as the respiratory chain complexes and the mitochondrial ribosome, as well as molecules likely to perform their function as monomers, such as the family of SLC25 transporters. We found that the proteome encompassing these nuclear-encoded mitochondrial genes and obtained from microdissected brain tissue segregated the hippocampus, striatum, and cortex from each other. Nuclear-encoded mitochondrial transcripts could only segregate cell types and brain regions when the analysis was performed at the single-cell level. In fact, single-cell mitochondrial transcriptomes were able to distinguish glutamatergic and distinct types of GABAergic neurons from one another. Within these cell categories, unique SLC25A transporters were able to identify distinct cell subpopulations. Our results demonstrate heterogeneous mitochondrial composition across brain regions and cell types. We postulate that mitochondrial heterogeneity influences regional and cell type-specific mechanisms in health and disease.


Subject(s)
Genes, Mitochondrial , Neurons , Animals , Cell Nucleus , Hippocampus , Mice , Mitochondria/genetics , Neurons/metabolism
10.
J Neurosci ; 41(2): 215-233, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33208468

ABSTRACT

Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.


Subject(s)
Copper/physiology , Golgi Apparatus/physiology , Homeostasis/physiology , Organelle Biogenesis , Synapses/physiology , Adenosine Triphosphatases/metabolism , Animals , Animals, Genetically Modified , Cell Line , Copper/toxicity , Copper-Transporting ATPases/genetics , Drosophila , Electric Stimulation , Extracellular Space/metabolism , Female , Humans , Male , RNA, Small Interfering , Synapses/ultrastructure
11.
PLoS One ; 15(11): e0235998, 2020.
Article in English | MEDLINE | ID: mdl-33253193

ABSTRACT

In contrast to the vast majority of research that has focused on the immediate effects of ionizing radiation, this work concentrates on the molecular mechanism driving delayed effects that emerge in the progeny of the exposed cells. We employed functional protein arrays to identify molecular changes induced in a human bronchial epithelial cell line (HBEC3-KT) and osteosarcoma cell line (U2OS) and evaluated their impact on outcomes associated with radiation induced genomic instability (RIGI) at day 5 and 7 post-exposure to a 2Gy X-ray dose, which revealed replication stress in the context of increased FOXM1b expression. Irradiated cells had reduced DNA replication rate detected by the DNA fiber assay and increased DNA resection detected by RPA foci and phosphorylation. Irradiated cells increased utilization of homologous recombination-dependent repair detected by a gene conversion assay and DNA damage at mitosis reflected by RPA positive chromosomal bridges, micronuclei formation and 53BP1 positive bodies in G1, all known outcomes of replication stress. Interference with the function of FOXM1, a transcription factor widely expressed in cancer, employing an aptamer, decreased radiation-induced micronuclei formation and cell transformation while plasmid-driven overexpression of FOXM1b was sufficient to induce replication stress, micronuclei formation and cell transformation.


Subject(s)
Bronchi/pathology , Cell Transformation, Neoplastic/pathology , DNA Replication , Epithelial Cells/pathology , Forkhead Box Protein M1/metabolism , Genomic Instability/radiation effects , Stress, Physiological , Bronchi/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , DNA Damage , Epithelial Cells/metabolism , Forkhead Box Protein M1/genetics , Humans , Radiation, Ionizing
12.
Oncogene ; 39(25): 4798-4813, 2020 06.
Article in English | MEDLINE | ID: mdl-32457468

ABSTRACT

Small cell lung cancer (SCLC) is a highly aggressive malignancy with poor outcomes associated with resistance to cisplatin-based chemotherapy. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2), which silences transcription through trimethylation of histone H3 lysine 27 (H3K27me3) and has emerged as an important therapeutic target with inhibitors targeting its methyltransferase activity under clinical investigation. Here, we show that EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair (NER) and govern cisplatin resistance in SCLC. Using a synthetic lethality screen, we identified important regulators of cisplatin resistance in SCLC cells, including EZH2. EZH2 depletion causes cellular cisplatin and UV hypersensitivity in an epistatic manner with DDB1-DDB2. EZH2 complexes with DDB1-DDB2 and promotes DDB2 stability by impairing its ubiquitination independent of methyltransferase activity or PRC2, thereby facilitating DDB2 localization to cyclobutane pyrimidine dimer crosslinks to govern their repair. Furthermore, targeting EZH2 for depletion with DZNep strongly sensitizes SCLC cells and tumors to cisplatin. Our findings reveal a non-catalytic and PRC2-independent function for EZH2 in promoting NER through DDB2 stabilization, suggesting a rationale for targeting EZH2 beyond its catalytic activity for overcoming cisplatin resistance in SCLC.


Subject(s)
DNA Repair/genetics , DNA-Binding Proteins/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Polycomb Repressive Complex 2/metabolism , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin/therapeutic use , DNA/genetics , DNA/metabolism , DNA Repair/drug effects , DNA-Binding Proteins/genetics , Drug Resistance, Neoplasm/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Polycomb Repressive Complex 2/genetics , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism
13.
Sci Rep ; 9(1): 12546, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31467399

ABSTRACT

While evidence supporting the notion that exposures to heavy ion radiation increase the risk for cancer and other disease development is accumulating, the underlying biological mechanisms remain poorly understood. To identify novel phenotypes that persist over time that may be related to increased disease development risk, we performed a quantitative global proteome analysis of immortalized human bronchial epithelial cells (HBEC3-KT) at day 7 post exposure to 0.5 Gy Fe ion (600 MeV/nucleon, Linear Energy Transfer (LET) = 175 keV/µm). The analysis revealed a significant increase in the expression of 4 enzymes of the cholesterol biosynthesis pathway. Elevated expression of enzymes of the cholesterol pathway was associated with increased cholesterol levels in irradiated cells and in lung tissue measured by a biochemical method and by filipin staining of cell-bound cholesterol. While a 1 Gy dose of Fe ion was sufficient to induce a robust response, a dose of 5 Gy X-rays was necessary to induce a similar cholesterol accumulation in HBEC3-KT cells. Radiation-increased cholesterol levels were reduced by treatment with inhibitors affecting the activity of enzymes in the biosynthesis pathway. To examine the implications of this finding for radiotherapy exposures, we screened a panel of lung cancer cell lines for cholesterol levels following exposure to X-rays. We identified a subset of cell lines that increased cholesterol levels in response to 5 Gy X-rays. Survival studies revealed that statin treatment is radioprotective, suggesting that cholesterol increases are associated with cytotoxicity. In summary, our findings uncovered a novel radiation-induced response, which may modify radiation treatment outcomes and contribute to risk for radiation-induced cardiovascular disease and carcinogenesis.


Subject(s)
Cholesterol/biosynthesis , Lung/metabolism , Lung/radiation effects , Cell Line , Humans , Lung/cytology , Phenotype
14.
J Neurosci ; 39(18): 3561-3581, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30833507

ABSTRACT

Neurodevelopmental disorders offer insight into synaptic mechanisms. To unbiasedly uncover these mechanisms, we studied the 22q11.2 syndrome, a recurrent copy number variant, which is the highest schizophrenia genetic risk factor. We quantified the proteomes of 22q11.2 mutant human fibroblasts from both sexes and mouse brains carrying a 22q11.2-like defect, Df(16)A+/- Molecular ontologies defined mitochondrial compartments and pathways as some of top ranked categories. In particular, we identified perturbations in the SLC25A1-SLC25A4 mitochondrial transporter interactome as associated with the 22q11.2 genetic defect. Expression of SLC25A1-SLC25A4 interactome components was affected in neuronal cells from schizophrenia patients. Furthermore, hemideficiency of the Drosophila SLC25A1 or SLC25A4 orthologues, dSLC25A1-sea and dSLC25A4-sesB, affected synapse morphology, neurotransmission, plasticity, and sleep patterns. Our findings indicate that synapses are sensitive to partial loss of function of mitochondrial solute transporters. We propose that mitoproteomes regulate synapse development and function in normal and pathological conditions in a cell-specific manner.SIGNIFICANCE STATEMENT We address the central question of how to comprehensively define molecular mechanisms of the most prevalent and penetrant microdeletion associated with neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. This complex mutation reduces gene dosage of ∼63 genes in humans. We describe a disruption of the mitoproteome in 22q11.2 patients and brains of a 22q11.2 mouse model. In particular, we identify a network of inner mitochondrial membrane transporters as a hub required for synapse function. Our findings suggest that mitochondrial composition and function modulate the risk of neurodevelopmental disorders, such as schizophrenia.


Subject(s)
22q11 Deletion Syndrome/metabolism , Brain/metabolism , Mitochondria/metabolism , Neurons/metabolism , Synapses/metabolism , Adenine Nucleotide Translocator 1/metabolism , Animals , Behavior, Animal , Cell Line , Chromosome Deletion , Chromosomes, Human, Pair 22/metabolism , Drosophila , Female , Fibroblasts/metabolism , Humans , Male , Mitochondrial Proteins/metabolism , Organic Anion Transporters/metabolism , Proteome , Schizophrenia/metabolism
15.
Nucleic Acids Res ; 46(9): 4515-4532, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29522130

ABSTRACT

Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer.


Subject(s)
Cell Transformation, Neoplastic , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Genomic Instability , Carcinoma, Non-Small-Cell Lung/enzymology , Cell Line , Cell Line, Tumor , Cell Nucleus/enzymology , DNA Damage , DNA Replication , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Epithelial Cells/enzymology , Humans , Lung Neoplasms/enzymology , Mutation , Respiratory Mucosa/cytology , Respiratory Mucosa/enzymology
16.
Cell Syst ; 6(3): 368-380.e6, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29397366

ABSTRACT

Rare neurological diseases shed light onto universal neurobiological processes. However, molecular mechanisms connecting genetic defects to their disease phenotypes are elusive. Here, we obtain mechanistic information by comparing proteomes of cells from individuals with rare disorders with proteomes from their disease-free consanguineous relatives. We use triple-SILAC mass spectrometry to quantify proteomes from human pedigrees affected by mutations in ATP7A, which cause Menkes disease, a rare neurodegenerative and neurodevelopmental disorder stemming from systemic copper depletion. We identified 214 proteins whose expression was altered in ATP7A-/y fibroblasts. Bioinformatic analysis of ATP7A-mutant proteomes identified known phenotypes and processes affected in rare genetic diseases causing copper dyshomeostasis, including altered mitochondrial function. We found connections between copper dyshomeostasis and the UCHL1/PARK5 pathway of Parkinson disease, which we validated with mitochondrial respiration and Drosophila genetics assays. We propose that our genealogical "omics" strategy can be broadly applied to identify mechanisms linking a genomic locus to its phenotypes.


Subject(s)
Copper/metabolism , Ubiquitin Thiolesterase/genetics , Adenosine Triphosphatases/genetics , Animals , Cation Transport Proteins/genetics , Computational Biology/methods , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Disease Models, Animal , Drosophila , Female , Fibroblasts/metabolism , Homeostasis/genetics , Humans , Male , Menkes Kinky Hair Syndrome/genetics , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Mutation , Pedigree , Phenotype , Proteomics/methods , Rare Diseases/metabolism , Ubiquitin Thiolesterase/metabolism
17.
Cell Rep ; 20(8): 1921-1935, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28834754

ABSTRACT

DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.


Subject(s)
DNA End-Joining Repair , Homologous Recombination , SAM Domain and HD Domain-Containing Protein 1/genetics , DNA Breaks, Double-Stranded , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , SAM Domain and HD Domain-Containing Protein 1/deficiency , SAM Domain and HD Domain-Containing Protein 1/metabolism , Transfection
18.
Radiat Res ; 188(4): 373-380, 2017 10.
Article in English | MEDLINE | ID: mdl-28753066

ABSTRACT

Exposures to low- and high-linear energy transfer (LET) radiation induce clustered damage in DNA that is difficult to repair. These lesions are manifested as DNA-associated foci positive for DNA repair proteins and have been shown to persist in vitro and in vivo for days in several cell types and tissues in response to low-LET radiation. Although in some experimental conditions these residual foci have been linked with genomic instability and chromosomal aberrations, it remains poorly understood what type of damage they represent. Because high-LET radiation induces complex DNA lesions more efficiently than low-LET radiation, we compared the efficacy of several heavy ions (oxygen, silicon and iron) in a range (17 , 70 and 175 keV/µm, respectively) of LET and X rays at a 1 Gy dose. Persistent genomic damage was measured by γ-H2AX-53BP1-positive residual foci and micronucleus levels during the first three days and up to a week after in vitro and in vivo irradiation in lung cells and tissue. We demonstrate that in an in vitro irradiated mouse bronchial epithelial cell line, the expression of residual foci is readily detectable at 24 h with levels declining in the following 72 h postirradiation, but still persisting elevated over background at day 7. At this time, foci numbers are low but significant and proportional to the dose and quality of the radiation. The expression of residual foci in vitro was mirrored by increased micronuclei generation measured in cytokinesis-blocked cells, indicating long-term, persistent effects of genomic damage in this cell type. We also tested the expression of residual foci in lung tissue of C57BL/6 mice that received whole-body X-ray or heavy-ion irradiation. We found that at day 7 postirradiation, Clara/Club cells, but not pro-SPC-positive pneumocytes, contained a subpopulation of cells expressing γ-H2AX-53BP1-positive foci in a radiation quality-dependent manner. These findings suggest that in vivo persistent DNA repair foci reflect the initial genotoxic damage induced by radiation and a differential vulnerability among cells in the lung.


Subject(s)
Epithelial Cells/metabolism , Epithelial Cells/radiation effects , Genomics , Linear Energy Transfer , Lung/metabolism , Lung/radiation effects , Animals , Cell Line , Dose-Response Relationship, Radiation , Female , Mice , Mice, Inbred C57BL , Phenotype
19.
Elife ; 62017 03 29.
Article in English | MEDLINE | ID: mdl-28355134

ABSTRACT

Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival.


Subject(s)
Copper-Transporting ATPases/metabolism , Copper/metabolism , Neurons/physiology , Protein Interaction Maps , Animals , Cell Line , Cell Survival , Drosophila , Humans
20.
Life Sci Space Res (Amst) ; 9: 19-47, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27345199

ABSTRACT

Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.


Subject(s)
Biomarkers/metabolism , Cosmic Radiation/adverse effects , Neoplasms, Radiation-Induced/diagnosis , Dose-Response Relationship, Radiation , Evaluation Studies as Topic , Humans , Neoplasms, Radiation-Induced/etiology , Neoplasms, Radiation-Induced/metabolism , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...