Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Energy Lett ; 6(6): 2293-2304, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34307879

ABSTRACT

Halide perovskite/crystalline silicon (c-Si) tandem solar cells promise power conversion efficiencies beyond the limits of single-junction cells. However, the local light-matter interactions of the perovskite material embedded in this pyramidal multijunction configuration, and the effect on device performance, are not well understood. Here, we characterize the microscale optoelectronic properties of the perovskite semiconductor deposited on different c-Si texturing schemes. We find a strong spatial and spectral dependence of the photoluminescence (PL) on the geometrical surface constructs, which dominates the underlying grain-to-grain PL variation found in halide perovskite films. The PL response is dependent upon the texturing design, with larger pyramids inducing distinct PL spectra for valleys and pyramids, an effect which is mitigated with small pyramids. Further, optimized quasi-Fermi level splittings and PL quantum efficiencies occur when the c-Si large pyramids have had a secondary smoothing etch. Our results suggest that a holistic optimization of the texturing is required to maximize light in- and out-coupling of both absorber layers and there is a fine balance between the optimal geometrical configuration and optoelectronic performance that will guide future device designs.

2.
Adv Mater ; 32(50): e2003312, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33175442

ABSTRACT

Metal halide perovskites (MHPs) have transfixed the photovoltaic (PV) community due to their outstanding and tunable optoelectronic properties coupled to demonstrations of high-power conversion efficiencies (PCE) at a range of bandgaps. This has motivated the field to push perovskites to reach the highest possible performance. One way to increase the efficiency is by fabricating multijunction solar cells, which can split the solar spectrum, reducing thermalization loss. Low-cost all-perovskite tandems have a real chance to soon exceed 30% PCE, which could transform the PV industry. Achieving this goal requires the identification of perovskite sub-cells that are both highly efficient and can be effectively integrated. Herein, it is discussed how to navigate the multiple-choice adventure in choosing between the myriad of options and considerations present when deciding what perovskite materials, contact layers, and processing tools to use. Some of the potential fabrication pitfalls often encountered in MHP based tandem PVs are highlighted, so that they can hopefully be avoided in the future.

3.
Science ; 367(6482): 1097-1104, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32139537

ABSTRACT

Wide-band gap metal halide perovskites are promising semiconductors to pair with silicon in tandem solar cells to pursue the goal of achieving power conversion efficiency (PCE) greater than 30% at low cost. However, wide-band gap perovskite solar cells have been fundamentally limited by photoinduced phase segregation and low open-circuit voltage. We report efficient 1.67-electron volt wide-band gap perovskite top cells using triple-halide alloys (chlorine, bromine, iodine) to tailor the band gap and stabilize the semiconductor under illumination. We show a factor of 2 increase in photocarrier lifetime and charge-carrier mobility that resulted from enhancing the solubility of chlorine by replacing some of the iodine with bromine to shrink the lattice parameter. We observed a suppression of light-induced phase segregation in films even at 100-sun illumination intensity and less than 4% degradation in semitransparent top cells after 1000 hours of maximum power point (MPP) operation at 60°C. By integrating these top cells with silicon bottom cells, we achieved a PCE of 27% in two-terminal monolithic tandems with an area of 1 square centimeter.

4.
Nat Mater ; 17(9): 820-826, 2018 09.
Article in English | MEDLINE | ID: mdl-29891887

ABSTRACT

Tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. State-of-the-art monolithic two-terminal perovskite/silicon tandem devices have so far featured silicon bottom cells that are polished on their front side to be compatible with the perovskite fabrication process. This concession leads to higher potential production costs, higher reflection losses and non-ideal light trapping. To tackle this issue, we developed a top cell deposition process that achieves the conformal growth of multiple compounds with controlled optoelectronic properties directly on the micrometre-sized pyramids of textured monocrystalline silicon. Tandem devices featuring a silicon heterojunction cell and a nanocrystalline silicon recombination junction demonstrate a certified steady-state efficiency of 25.2%. Our optical design yields a current density of 19.5 mA cm-2 thanks to the silicon pyramidal texture and suggests a path for the realization of 30% monolithic perovskite/silicon tandem devices.

5.
J Phys Chem Lett ; 8(4): 838-843, 2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28121155

ABSTRACT

Optical absorptance spectroscopy of polycrystalline CH3NH3PbI3 films usually indicates the presence of a PbI2 phase, either as a preparation residue or due to film degradation, but gives no insight on how this may affect electrical properties. Here, we apply photocurrent spectroscopy to both perovskite solar cells and coplanar-contacted layers at various stages of degradation. In both cases, we find that the presence of a PbI2 phase restricts charge-carrier transport, suggesting that PbI2 encapsulates CH3NH3PbI3 grains. We also find that PbI2 injects holes into the CH3NH3PbI3 grains, increasing the apparent photosensitivity of PbI2. This phenomenon, known as modulation doping, is absent in the photocurrent spectra of solar cells, where holes and electrons have to be collected in pairs. This interpretation provides insights into the photogeneration and carrier transport in dual-phase perovskites.

6.
J Phys Chem Lett ; 7(24): 5114-5120, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973901

ABSTRACT

Perovskite/silicon tandem solar cells with high power conversion efficiencies have the potential to become a commercially viable photovoltaic option in the near future. However, device design and optimization is challenging because conventional characterization methods do not give clear feedback on the localized chemical and physical factors that limit performance within individual subcells, especially when stability and degradation is a concern. In this study, we use light beam induced current (LBIC) to probe photocurrent collection nonuniformities in the individual subcells of perovskite/silicon tandems. The choices of lasers and light biasing conditions allow efficiency-limiting effects relating to processing defects, optical interference within the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer structures will be important for future optimization of perovskite/silicon tandem solar cells.

7.
Nano Lett ; 16(11): 7013-7018, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27775887

ABSTRACT

Changes in the nanostructure of methylammonium lead iodide (MAPbI3) perovskite solar cells are assessed as a function of current-voltage stimulus by biasing thin samples in situ in a transmission electron microscope. Various degradation pathways are identified both in situ and ex situ, predominantly at the positively biased MAPbI3 interface. Iodide migrates into the positively biased charge transport layer and also volatilizes along with organic species, which triggers the nucleation of PbI2 nanoparticles and voids and hence decreases the cell performance.

8.
ACS Appl Mater Interfaces ; 8(27): 17260-7, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27338079

ABSTRACT

Transition metal oxides (TMOs) are commonly used in a wide spectrum of device applications, thanks to their interesting electronic, photochromic, and electrochromic properties. Their environmental sensitivity, exploited for gas and chemical sensors, is however undesirable for application in optoelectronic devices, where TMOs are used as charge injection or extraction layers. In this work, we first study the coloration of molybdenum and tungsten oxide layers, induced by thermal annealing, Ar plasma exposure, or transparent conducting oxide overlayer deposition, typically used in solar cell fabrication. We then propose a discoloration method based on an oxidizing CO2 plasma treatment, which allows for a complete bleaching of colored TMO films and prevents any subsequent recoloration during following cell processing steps. Then, we show that tungsten oxide is intrinsically more resilient to damage induced by Ar plasma exposure as compared to the commonly used molybdenum oxide. Finally, we show that parasitic absorption in TMO-based transparent electrodes, as used for semitransparent perovskite solar cells, silicon heterojunction solar cells, or perovskite/silicon tandem solar cells, can be drastically reduced by replacing molybdenum oxide with tungsten oxide and by applying a CO2 plasma pretreatment prior to the transparent conductive oxide overlayer deposition.

9.
J Phys Chem Lett ; 7(1): 161-6, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26687850

ABSTRACT

Monolithic perovskite/crystalline silicon tandem solar cells hold great promise for further performance improvement of well-established silicon photovoltaics; however, monolithic tandem integration is challenging, evidenced by the modest performances and small-area devices reported so far. Here we present first a low-temperature process for semitransparent perovskite solar cells, yielding efficiencies of up to 14.5%. Then, we implement this process to fabricate monolithic perovskite/silicon heterojunction tandem solar cells yielding efficiencies of up to 21.2 and 19.2% for cell areas of 0.17 and 1.22 cm(2), respectively. Both efficiencies are well above those of the involved subcells. These single-junction perovskite and tandem solar cells are hysteresis-free and demonstrate steady performance under maximum power point tracking for several minutes. Finally, we present the effects of varying the intermediate recombination layer and hole transport layer thicknesses on tandem cell photocurrent generation, experimentally and by transfer matrix simulations.

10.
J Phys Chem Lett ; 6(1): 66-71, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-26263093

ABSTRACT

The complex refractive index (dielectric function) of planar CH3NH3PbI3 thin films at room temperature is investigated by variable angle spectroscopic ellipsometry and spectrophotometry. Knowledge of the complex refractive index is essential for designing photonic devices based on CH3NH3PbI3 thin films such as solar cells, light-emitting diodes, or lasers. Because the directly measured quantities (reflectance, transmittance, and ellipsometric spectra) are inherently affected by multiple reflections, the complex refractive index has to be determined indirectly by fitting a model dielectric function to the experimental spectra. We model the dielectric function according to the Forouhi-Bloomer formulation with oscillators positioned at 1.597, 2.418, and 3.392 eV and achieve excellent agreement with the experimental spectra. Our results agree well with previously reported data of the absorption coefficient and are consistent with Kramers-Kronig transformations. The real part of the refractive index assumes a value of 2.611 at 633 nm, implying that CH3NH3PbI3-based solar cells are ideally suited for the top cell in monolithic silicon-based tandem solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...