Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
2.
J Virol ; 98(4): e0185823, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38445887

ABSTRACT

Most individuals are latently infected with herpes simplex virus type 1 (HSV-1), and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent HSV-1 is also present in immune cells recovered from the ganglia of experimentally infected mice. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for that conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were near-exclusively detected in mixed populations of cells undergoing cell death. Specific loss of HSV-1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained using compromised scRNA-Seq datasets.IMPORTANCEMost people are infected with herpes simplex virus type 1 (HSV-1) during their life. Once infected, the virus generally remains in a latent (silent) state, hiding within the neurons of peripheral ganglia. Periodic reactivation (reawakening) of the virus may cause fresh diseases such as cold sores. A recent study using single-cell RNA sequencing (scRNA-Seq) proposed that HSV-1 can also establish latency in the immune cells of mice, challenging existing dogma. We reanalyzed the data from that study and identified several flaws in the methodologies and analyses performed that invalidate the published conclusions. Specifically, we showed that the methodologies used resulted in widespread destruction of neurons which resulted in the presence of contaminants that confound the data analysis. We thus conclude that there remains little to no evidence for HSV-1 latency in immune cells.


Subject(s)
Artifacts , Ganglia, Sensory , Herpesvirus 1, Human , Sensory Receptor Cells , Sequence Analysis, RNA , Single-Cell Gene Expression Analysis , Virus Latency , Animals , Mice , Cell Death , Datasets as Topic , Ganglia, Sensory/immunology , Ganglia, Sensory/pathology , Ganglia, Sensory/virology , Herpes Simplex/immunology , Herpes Simplex/pathology , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , MicroRNAs/analysis , MicroRNAs/genetics , Reproducibility of Results , RNA, Viral/analysis , RNA, Viral/genetics , Sensory Receptor Cells/pathology , Sensory Receptor Cells/virology
3.
J Neuroinflammation ; 21(1): 38, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302975

ABSTRACT

BACKGROUND: Herpes simplex virus (HSV) encephalitis (HSE) is a serious and potentially life-threatening disease, affecting both adults and newborns. Progress in understanding the virus and host factors involved in neonatal HSE has been hampered by the limitations of current brain models that do not fully recapitulate the tissue structure and cell composition of the developing human brain in health and disease. Here, we developed a human fetal organotypic brain slice culture (hfOBSC) model and determined its value in mimicking the HSE neuropathology in vitro. METHODS: Cell viability and tissues integrity were determined by lactate dehydrogenase release in supernatant and immunohistological (IHC) analyses. Brain slices were infected with green fluorescent protein (GFP-) expressing HSV-1 and HSV-2. Virus replication and spread were determined by confocal microscopy, PCR and virus culture. Expression of pro-inflammatory cytokines and chemokines were detected by PCR. Cell tropism and HSV-induced neuropathology were determined by IHC analysis. Finally, the in situ data of HSV-infected hfOBSC were compared to the neuropathology detected in human HSE brain sections. RESULTS: Slicing and serum-free culture conditions were optimized to maintain the viability and tissue architecture of ex vivo human fetal brain slices for at least 14 days at 37 °C in a CO2 incubator. The hfOBSC supported productive HSV-1 and HSV-2 infection, involving predominantly infection of neurons and astrocytes, leading to expression of pro-inflammatory cytokines and chemokines. Both viruses induced programmed cell death-especially necroptosis-in infected brain slices at later time points after infection. The virus spread, cell tropism and role of programmed cell death in HSV-induced cell death resembled the neuropathology of HSE. CONCLUSIONS: We developed a novel human brain culture model in which the viability of the major brain-resident cells-including neurons, microglia, astrocytes and oligodendrocytes-and the tissue architecture is maintained for at least 2 weeks in vitro under serum-free culture conditions. The close resemblance of cell tropism, spread and neurovirulence of HSV-1 and HSV-2 in the hfOBSC model with the neuropathological features of human HSE cases underscores its potential to detail the pathophysiology of other neurotropic viruses and as preclinical model to test novel therapeutic interventions.


Subject(s)
Encephalitis, Herpes Simplex , Herpes Simplex , Herpesvirus 1, Human , Infant, Newborn , Adult , Humans , Astrocytes/pathology , Necroptosis , Herpes Simplex/pathology , Brain/pathology , Cytokines , Neurons/pathology , Chemokines
4.
bioRxiv ; 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37503290

ABSTRACT

Most individuals are latently infected with herpes simplex virus type 1 (HSV-1) and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent virus is also present in immune cells recovered from ganglia in a mouse model used for studying latency. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for this conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were nearexclusively detected in a mixed population of cells undergoing cell death. Specific loss of HSV1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained by inaccuracies in the data analyses.

5.
J Neuroinflammation ; 20(1): 141, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308917

ABSTRACT

BACKGROUND: Trigeminal ganglia (TG) neurons are an important site of lifelong latent varicella-zoster virus (VZV) infection. Although VZV-specific T-cells are considered pivotal to control virus reactivation, their protective role at the site of latency remains uncharacterized. METHODS: Paired blood and TG specimens were obtained from ten latent VZV-infected adults, of which nine were co-infected with herpes simplex virus type 1 (HSV-1). Short-term TG-derived T-cell lines (TG-TCL), generated by mitogenic stimulation of TG-derived T-cells, were probed for HSV-1- and VZV-specific T-cells using flow cytometry. We also performed VZV proteome-wide screening of TG-TCL to determine the fine antigenic specificity of VZV reactive T-cells. Finally, the relationship between T-cells and latent HSV-1 and VZV infections in TG was analyzed by reverse transcription quantitative PCR (RT-qPCR) and in situ analysis for T-cell proteins and latent viral transcripts. RESULTS: VZV proteome-wide analysis of ten TG-TCL identified two VZV antigens recognized by CD8 T-cells in two separate subjects. The first was an HSV-1/VZV cross-reactive CD8 T-cell epitope, whereas the second TG harbored CD8 T-cells reactive with VZV specifically and not the homologous peptide in HSV-1. In silico analysis showed that HSV-1/VZV cross reactivity of TG-derived CD8 T-cells reactive with ten previously identified HSV-1 epitopes was unlikely, suggesting that HSV-1/VZV cross-reactive T-cells are not a common feature in dually infected TG. Finally, no association was detected between T-cell infiltration and VZV latency transcript abundance in TG by RT-qPCR or in situ analyses. CONCLUSIONS: The low presence of VZV- compared to HSV-1-specific CD8 T-cells in human TG suggests that VZV reactive CD8 T-cells play a limited role in maintaining VZV latency.


Subject(s)
Herpesvirus 1, Human , Proteome , Adult , Humans , Herpesvirus 3, Human , Prevalence , Trigeminal Ganglion , CD8-Positive T-Lymphocytes , Epitopes
6.
Nat Commun ; 13(1): 6957, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36376285

ABSTRACT

Herpes zoster is a localized skin infection caused by reactivation of latent varicella-zoster virus. Tissue-resident T cells likely control skin infections. Zoster provides a unique opportunity to determine if focal reinfection of human skin boosts local or disseminated antigen-specific tissue-resident T cells. Here, we show virus-specific T cells are retained over one year in serial samples of rash site and contralateral unaffected skin of individuals recovered from zoster. Consistent with zoster resolution, viral DNA is largely undetectable on skin from day 90 and virus-specific B and T cells decline in blood. In skin, there is selective infiltration and long-term persistence of varicella-zoster virus-specific T cells in the rash site relative to the contralateral site. The skin T cell infiltrates express the canonical tissue-resident T cell markers CD69 and CD103. These findings show that zoster promotes spatially-restricted long-term retention of antigen-specific tissue-resident T cells in previously infected skin.


Subject(s)
Exanthema , Herpes Zoster , Humans , Herpesvirus 3, Human , Skin , DNA, Viral/genetics
7.
J Neuroinflammation ; 19(1): 249, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36203181

ABSTRACT

BACKGROUND: Trigeminal ganglia (TG) neurons are the main site of lifelong latent herpes simplex virus type 1 (HSV-1) infection. T-cells in ganglia contribute to long-term control of latent HSV-1 infection, but it is unclear whether these cells are bona fide tissue-resident memory T-cells (TRM). We optimized the processing of human post-mortem nervous tissue to accurately phenotype T-cells in human TG ex vivo and in situ. METHODS: Peripheral blood mononuclear cells (PBMC; 5 blood donors) were incubated with several commercial tissue digestion enzyme preparations to determine off-target effect on simultaneous detection of 15 specific T-cell subset markers by flow cytometry. Next, optimized enzymatic digestion was applied to ex vivo phenotype T-cells in paired PBMC, normal appearing white matter (NAWM) and TG of 8 deceased brain donors obtained < 9 h post-mortem by flow cytometry. Finally, the phenotypic and functional markers, and spatial orientation of T-cells in relation to neuronal somata, were determined in TG tissue sections of five HSV-1-latently infected individuals by multiparametric in situ analysis. RESULTS: Collagenase IV digestion of human nervous tissue was most optimal to obtain high numbers of viable T-cells without disrupting marker surface expression. Compared to blood, majority T-cells in paired NAWM and TG were effector memory T-cells expressing the canonical TRM markers CD69, CXCR6 and the immune checkpoint marker PD1, and about half co-expressed CD103. A trend of relatively higher TRM frequencies were detected in TG of latently HSV-1-infected compared to HSV-1 naïve individuals. Subsequent in situ analysis of latently HSV-1-infected TG showed the presence of cytotoxic T-cells (TIA-1+), which occasionally showed features of proliferation (KI-67+) and activation (CD137+), but without signs of degranulation (CD107a+) nor damage (TUNEL+) of TG cells. Whereas majority T-cells expressed PD-1, traits of T-cell senescence (p16INK4a+) were not detected. CONCLUSIONS: The human TG represents an immunocompetent environment in which both CD4 and CD8 TRM are established and retained. Based on our study insights, we advocate for TRM-targeted vaccine strategies to bolster local HSV-1-specific T-cell immunity, not only at the site of recurrent infection but also at the site of HSV-1 latency.


Subject(s)
Herpes Simplex , Herpesviridae Infections , Herpesvirus 1, Human , CD8-Positive T-Lymphocytes , Humans , Ki-67 Antigen/metabolism , Leukocyte Common Antigens/metabolism , Leukocytes, Mononuclear , Memory T Cells , Programmed Cell Death 1 Receptor/metabolism , Trigeminal Ganglion
8.
Brain Pathol ; 32(4): e13044, 2022 07.
Article in English | MEDLINE | ID: mdl-34913212

ABSTRACT

Increasing evidence supports the role of neurotropic herpes simplex virus 1 (HSV-1) in the pathogenesis of Alzheimer's disease (AD). However, it is unclear whether previously reported findings in HSV-1 cell culture and animal models can be translated to humans. Here, we analyzed clinical specimens from latently HSV-1 infected individuals and individuals with lytic HSV infection of the brain (herpes simplex encephalitis; HSE). Latent HSV-1 DNA load and latency-associated transcript (LAT) expression were identical between trigeminal ganglia (TG) of AD patients and controls. Amyloid ß (Aß) and hyperphosphorylated tau (pTau) were not detected in latently HSV-infected TG neurons. Aging-related intraneuronal Aß accumulations, neurofibrillary tangles (NFT), and/or extracellular Aß plaques were observed in the brain of some HSE patients, but these were neither restricted to HSV-infected neurons nor brain regions containing virus-infected cells. Analysis of unique brain material from an AD patient with concurrent HSE showed that HSV-infected cells frequently localized close to Aß plaques and NFT, but were not associated with exacerbated AD-related pathology. HSE-associated neuroinflammation was not associated with specific Aß or pTau phenotypes. Collectively, we observed that neither latent nor lytic HSV infection of human neurons is directly associated with aberrant Aß or pTau protein expression in ganglia and brain.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/metabolism , Herpes Simplex , Herpesvirus 1, Human , tau Proteins/metabolism , Animals , Brain/metabolism , Herpes Simplex/metabolism , Herpesvirus 1, Human/metabolism , Humans , Neurons/metabolism , Plaque, Amyloid , Trigeminal Ganglion/metabolism
9.
Viruses ; 13(11)2021 11 16.
Article in English | MEDLINE | ID: mdl-34835095

ABSTRACT

Primary varicella-zoster virus (VZV) infection leads to varicella and the establishment of lifelong latency in sensory ganglion neurons. Reactivation of latent VZV causes herpes zoster, which is frequently associated with chronic pain. Latent viral gene expression is restricted to the VZV latency-associated transcript (VLT) and VLT-ORF63 (VLT63) fusion transcripts. Since VLT and VLT63 encode proteins that are expressed during lytic infection, we investigated whether pVLT and pVLT-ORF63 are essential for VZV replication by performing VZV genome mutagenesis using CRISPR/Cas9 and BAC technologies. We first established that CRISPR/Cas9 can efficiently mutate VZV genomes in lytically VZV-infected cells through targeting non-essential genes ORF8 and ORF11 and subsequently show recovery of viable mutant viruses. By contrast, the VLT region was markedly resistant to CRISPR/Cas9 editing. Whereas most mutants expressed wild-type or N-terminally altered versions of pVLT and pVLT-ORF63, only a minority of the resulting mutant viruses lacked pVLT and pVLT-ORF63 coding potential. Growth curve analysis showed that pVLT/pVLT-ORF63 negative viruses were viable, but impaired in growth in epithelial cells. We confirmed this phenotype independently using BAC-derived pVLT/pVLT-ORF63 negative and repaired viruses. Collectively, these data demonstrate that pVLT and/or pVLT-ORF63 are dispensable for lytic VZV replication but promote efficient VZV infection in epithelial cells.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 3, Human/genetics , Viral Proteins/genetics , Virus Latency/genetics , CRISPR-Cas Systems , Cell Line , Ganglia/pathology , Ganglia/virology , Humans , Mutagenesis , Neurons/pathology , Neurons/virology , Open Reading Frames/genetics , Transcription, Genetic/drug effects , Viral Proteins/metabolism , Virus Physiological Phenomena
10.
PLoS Pathog ; 17(11): e1010084, 2021 11.
Article in English | MEDLINE | ID: mdl-34807956

ABSTRACT

Primary infection with varicella-zoster virus (VZV) causes varicella and the establishment of lifelong latency in sensory ganglion neurons. In one-third of infected individuals VZV reactivates from latency to cause herpes zoster, often complicated by difficult-to-treat chronic pain. Experimental infection of non-human primates with simian varicella virus (SVV) recapitulates most features of human VZV disease, thereby providing the opportunity to study the pathogenesis of varicella and herpes zoster in vivo. However, compared to VZV, the transcriptome and the full coding potential of SVV remains incompletely understood. Here, we performed nanopore direct RNA sequencing to annotate the SVV transcriptome in lytically SVV-infected African green monkey (AGM) and rhesus macaque (RM) kidney epithelial cells. We refined structures of canonical SVV transcripts and uncovered numerous RNA isoforms, splicing events, fusion transcripts and non-coding RNAs, mostly unique to SVV. We verified the expression of canonical and newly identified SVV transcripts in vivo, using lung samples from acutely SVV-infected cynomolgus macaques. Expression of selected transcript isoforms, including those located in the unique left-end of the SVV genome, was confirmed by reverse transcription PCR. Finally, we performed detailed characterization of the SVV homologue of the VZV latency-associated transcript (VLT), located antisense to ORF61. Analogous to VZV VLT, SVV VLT is multiply spliced and numerous isoforms are generated using alternative transcription start sites and extensive splicing. Conversely, low level expression of a single spliced SVV VLT isoform defines in vivo latency. Notably, the genomic location of VLT core exons is highly conserved between SVV and VZV. This work thus highlights the complexity of lytic SVV gene expression and provides new insights into the molecular biology underlying lytic and latent SVV infection. The identification of the SVV VLT homolog further underlines the value of the SVV non-human primate model to develop new strategies for prevention of herpes zoster.


Subject(s)
Herpesviridae Infections/genetics , Monkey Diseases/genetics , Transcriptome , Varicellovirus/genetics , Viral Proteins/genetics , Virus Latency , Animals , DNA Copy Number Variations , Herpesviridae Infections/virology , Macaca mulatta , Monkey Diseases/virology , RNA Splicing
11.
Stem Cell Res ; 56: 102535, 2021 10.
Article in English | MEDLINE | ID: mdl-34607262

ABSTRACT

Somatosensory low threshold mechanoreceptors (LTMRs) sense innocuous mechanical forces, largely through specialized axon termini termed sensory nerve endings, where the mechanotransduction process initiates upon activation of mechanotransducers. In humans, a subset of sensory nerve endings is enlarged, forming bulb-like expansions, termed bulbous nerve endings. There is no in vitro human model to study these neuronal endings. Piezo2 is the main mechanotransducer found in LTMRs. Recent evidence shows that Piezo1, the other mechanotransducer considered absent in dorsal root ganglia (DRG), is expressed at low level in somatosensory neurons. We established a differentiation protocol to generate, from iPSC-derived neuronal precursor cells, human LTMR recapitulating bulbous sensory nerve endings and heterogeneous expression of Piezo1 and Piezo2. The derived neurons express LTMR-specific genes, convert mechanical stimuli into electrical signals and have specialized axon termini that morphologically resemble bulbous nerve endings. Piezo2 is concentrated within these enlarged axon termini. Some derived neurons express low level Piezo1, and a subset co-express both channels. Thus, we generated a unique, iPSCs-derived human model that can be used to investigate the physiology of bulbous sensory nerve endings, and the role of Piezo1 and 2 during mechanosensation.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Mechanoreceptors/metabolism , Mechanotransduction, Cellular , Nerve Endings/metabolism , Sensory Receptor Cells/metabolism
12.
J Infect Dis ; 223(9): 1512-1521, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33507309

ABSTRACT

Lower respiratory tract (LRT) disease induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can deteriorate to acute respiratory distress syndrome (ARDS). Because the release of neutrophil extracellular traps (NETs) is implicated in ARDS pathogenesis, we investigated the presence of NETs and correlates of pathogenesis in blood and LRT samples of critically ill patients with COVID-19. Plasma NET levels peaked early after intensive care unit admission and were correlated with the SARS-CoV-2 RNA load in sputum and levels of neutrophil-recruiting chemokines and inflammatory markers in plasma samples. The baseline plasma NET quantity was correlated with disease severity but was not associated with soluble markers of thrombosis or with development of thrombosis. High NET levels were present in LRT samples and persisted during the course of COVID-19, consistent with the detection of NETs in bronchi and alveolar spaces in lung tissue from deceased patient with COVID-19. Thus, NETs are produced and retained in the LRT of critically ill patients with COVID-19 and could contribute to SARS-CoV-2-induced ARDS disease.


Subject(s)
Bronchoalveolar Lavage Fluid/virology , COVID-19/complications , COVID-19/pathology , Extracellular Traps/virology , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/pathology , SARS-CoV-2 , Adult , Aged , Biomarkers , Chemokines/blood , Cohort Studies , Computed Tomography Angiography , Critical Illness , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunohistochemistry , Male , Middle Aged , Netherlands/epidemiology , Prospective Studies , Severity of Illness Index , Thrombosis/virology , Viral Load
13.
J Infect Dis ; 223(1): 109-112, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32901261

ABSTRACT

BACKGROUND: To test the hypothesis that varicella-zoster virus (VZV) infection contributes to temporal arteritis pathogenesis, comprehensive in situ analysis was performed on temporal artery biopsies of 38 anterior ischemic optic neuropathy (AION) patients, including 14 (37%) with giant cell arteritis. METHODS: Biopsies were completely sectioned, and, on average, 146 serial sections per patient were stained for VZV glycoprotein E. RESULTS: Four of 38 AION patients showed VZV glycoprotein E staining, but VZV infection was not confirmed by staining for VZV IE63 protein and VZV-specific polymerase chain reaction on adjacent sections. CONCLUSIONS: This study refutes the premise that VZV is casually related to AION with and without giant cell arteritis.


Subject(s)
Giant Cell Arteritis/virology , Optic Neuropathy, Ischemic/virology , Varicella Zoster Virus Infection/complications , Adult , Aged , Aged, 80 and over , Biopsy , Case-Control Studies , Female , Giant Cell Arteritis/pathology , Humans , Male , Middle Aged , Optic Neuropathy, Ischemic/etiology , Optic Neuropathy, Ischemic/pathology , Temporal Arteries/pathology , Varicella Zoster Virus Infection/diagnosis
14.
Nat Commun ; 11(1): 6324, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303747

ABSTRACT

Varicella-zoster virus (VZV) establishes lifelong neuronal latency in most humans world-wide, reactivating in one-third to cause herpes zoster and occasionally chronic pain. How VZV establishes, maintains and reactivates from latency is largely unknown. VZV transcription during latency is restricted to the latency-associated transcript (VLT) and RNA 63 (encoding ORF63) in naturally VZV-infected human trigeminal ganglia (TG). While significantly more abundant, VLT levels positively correlated with RNA 63 suggesting co-regulated transcription during latency. Here, we identify VLT-ORF63 fusion transcripts and confirm VLT-ORF63, but not RNA 63, expression in human TG neurons. During in vitro latency, VLT is transcribed, whereas VLT-ORF63 expression is induced by reactivation stimuli. One isoform of VLT-ORF63, encoding a fusion protein combining VLT and ORF63 proteins, induces broad viral gene transcription. Collectively, our findings show that VZV expresses a unique set of VLT-ORF63 transcripts, potentially involved in the transition from latency to lytic VZV infection.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 3, Human/genetics , Sensory Receptor Cells/virology , Viral Proteins/genetics , Virus Activation/genetics , Virus Latency/genetics , Anisomycin/pharmacology , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Open Reading Frames/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects , Trigeminal Ganglion/pathology , Trigeminal Ganglion/virology , Viral Proteins/metabolism
15.
mBio ; 11(5)2020 10 06.
Article in English | MEDLINE | ID: mdl-33024035

ABSTRACT

Varicella-zoster virus (VZV), a double-stranded DNA virus, causes varicella, establishes lifelong latency in ganglionic neurons, and reactivates later in life to cause herpes zoster, commonly associated with chronic pain. The VZV genome is densely packed and produces multitudes of overlapping transcripts deriving from both strands. While 71 distinct open reading frames (ORFs) have thus far been experimentally defined, the full coding potential of VZV remains unknown. Here, we integrated multiple short-read RNA sequencing approaches with long-read direct RNA sequencing on RNA isolated from VZV-infected cells to provide a comprehensive reannotation of the lytic VZV transcriptome architecture. Through precise mapping of transcription start sites, splice junctions, and polyadenylation sites, we identified 136 distinct polyadenylated VZV RNAs that encode canonical ORFs, noncanonical ORFs, and ORF fusions, as well as putative noncoding RNAs (ncRNAs). Furthermore, we determined the kinetic class of all VZV transcripts and observed, unexpectedly, that transcripts encoding the ORF62 protein, previously designated Immediate-Early, were expressed with Late kinetics. Our work showcases the complexity of the VZV transcriptome and provides a comprehensive resource that will facilitate future functional studies of coding RNAs, ncRNAs, and the biological mechanisms underlying the regulation of viral transcription and translation during lytic VZV infection.IMPORTANCE Transcription from herpesviral genomes, executed by the host RNA polymerase II and regulated by viral proteins, results in coordinated viral gene expression to efficiently produce infectious progeny. However, the complete coding potential and regulation of viral gene expression remain ill-defined for the human alphaherpesvirus varicella-zoster virus (VZV), causative agent of both varicella and herpes zoster. Here, we present a comprehensive overview of the VZV transcriptome and the kinetic class of all identified viral transcripts, using two virus strains and two biologically relevant cell types. Additionally, our data provide an overview of how VZV diversifies its transcription from one of the smallest herpesviral genomes. Unexpectedly, the transcript encoding the major viral transactivator protein (pORF62) was expressed with Late kinetics, whereas orthologous transcripts in other alphaherpesviruses are typically expressed during the immediate early phase. Therefore, our work both establishes the architecture of the VZV transcriptome and provides insight into regulation of alphaherpesvirus gene expression.


Subject(s)
Herpesvirus 3, Human/genetics , Transcriptome , Viral Proteins/genetics , Cell Line , DNA, Viral/genetics , Epithelium/virology , Genome, Viral , Herpes Zoster/virology , Humans , Open Reading Frames , Retina/cytology , Transcription Initiation Site , Viral Proteins/metabolism , Virus Latency
16.
Front Microbiol ; 11: 1179, 2020.
Article in English | MEDLINE | ID: mdl-32547533

ABSTRACT

Herpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV) are two closely related human alphaherpesviruses that persistently infect most adults worldwide and cause a variety of clinically important diseases. Herpesviruses are extremely well adapted to their hosts and interact broadly with cellular proteins to regulate virus replication and spread. However, it is incompletely understood how HSV-1 and VZV interact with the host proteome during productive infection. This study determined the temporal changes in virus and host protein expression during productive HSV-1 and VZV infection in the same cell type. Results demonstrated the temporally coordinated expression of HSV-1 and VZV proteins in infected cells. Analysis of the host proteomes showed that both viruses affected extracellular matrix composition, transcription, RNA processing and cell division. Moreover, the prominent role of epidermal growth factor receptor (EGFR) signaling during productive HSV-1 and VZV infection was identified. Stimulation and inhibition of EGFR leads to increased and decreased virus replication, respectively. Collectively, the comparative temporal analysis of viral and host proteomes in productively HSV-1 and VZV-infected cells provides a valuable resource for future studies aimed to identify target(s) for antiviral therapy development.

17.
J Infect Dis ; 222(2): 305-308, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32232390

ABSTRACT

Ileocolic intussusception is the invagination of ileum into the colon. In a subset of patients, the disease is caused by mesenteric lymphadenopathy in response to (viral) infection. We present a case of an ileocolic intussusception necessitating surgery in a 7-month-old immunocompetent infant with concurrent primary wild-type varicella-zoster virus (VZV) infection, in whom chickenpox rash developed 2 days after surgery. Detailed in situ analyses of resected intestine for specific cell type markers and VZV RNA demonstrated VZV-infected lymphocytes and neurons in the gut wall and in ganglion cells of the myenteric plexus.


Subject(s)
Ileal Diseases/etiology , Intestinal Diseases/virology , Intussusception/etiology , Varicella Zoster Virus Infection/complications , Varicella Zoster Virus Infection/diagnosis , Herpesvirus 3, Human/isolation & purification , Humans , Ileal Diseases/diagnosis , Infant , Intestinal Diseases/diagnosis , Intestines/virology , Intussusception/diagnosis , Lymphocytes/virology , Male , Myenteric Plexus/virology , Neurons/virology , Varicella Zoster Virus Infection/virology
18.
J Infect Dis ; 218(suppl_2): S68-S74, 2018 09 22.
Article in English | MEDLINE | ID: mdl-30247598

ABSTRACT

Varicella-zoster virus (VZV) causes clinically significant illness during acute and recurrent infection accompanied by robust innate and acquired immune responses. Innate immune cells in skin and ganglion secrete type I interferon (IFN-I) and proinflammatory cytokines to control VZV. Varicella-zoster virus subverts pattern recognition receptor sensing to modulate antigen presentation and IFN-I production. During primary infection, VZV hijacks T cells to disseminate to the skin and establishes latency in ganglia. Durable T- and B-cell memory formed within a few weeks of infection is boosted by reactivation or re-exposure. Antigen-specific T cells are recruited and potentially retained in VZV-infected skin to counteract reactivation. In latently VZV-infected ganglia, however, virus-specific T cells have not been recovered, suggesting that local innate immune responses control VZV latency. Antibodies prevent primary VZV infection, whereas T cells are fundamental to resolving disease, limiting severity, and preventing reactivation. In this study, we review current knowledge on the interactions between VZV and the human immune system.


Subject(s)
Herpesvirus 3, Human/physiology , Varicella Zoster Virus Infection/immunology , Varicella Zoster Virus Infection/virology , Adaptive Immunity , Herpesvirus 3, Human/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunity, Innate
19.
Viruses ; 10(7)2018 06 28.
Article in English | MEDLINE | ID: mdl-29958408

ABSTRACT

Primary varicella-zoster virus (VZV) infection causes varicella (chickenpox) and the establishment of a lifelong latent infection in ganglionic neurons. VZV reactivates in about one-third of infected individuals to cause herpes zoster, often accompanied by neurological complications. The restricted host range of VZV and, until recently, a lack of suitable in vitro models have seriously hampered molecular studies of VZV latency. Nevertheless, recent technological advances facilitated a series of exciting studies that resulted in the discovery of a VZV latency-associated transcript (VLT) and provide novel insights into our understanding of VZV latency and factors that may initiate reactivation. Deducing the function(s) of VLT and the molecular mechanisms involved should now be considered a priority to improve our understanding of factors that govern VZV latency and reactivation. In this review, we summarize the implications of recent discoveries in the VZV latency field from both a virus and host perspective and provide a roadmap for future studies.


Subject(s)
Chickenpox/virology , Herpesvirus 3, Human/physiology , Virus Latency/genetics , Adaptive Immunity , Animals , Epigenesis, Genetic , Ganglion Cysts/virology , Gene Expression Regulation, Viral , Genome, Viral , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Immediate-Early Proteins/genetics , Immunity, Innate , Neurons/virology , Viral Envelope Proteins/genetics , Virus Activation/genetics
20.
Nat Commun ; 9(1): 1167, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29563516

ABSTRACT

Varicella-zoster virus (VZV), an alphaherpesvirus, establishes lifelong latent infection in the neurons of >90% humans worldwide, reactivating in one-third to cause shingles, debilitating pain and stroke. How VZV maintains latency remains unclear. Here, using ultra-deep virus-enriched RNA sequencing of latently infected human trigeminal ganglia (TG), we demonstrate the consistent expression of a spliced VZV mRNA, antisense to VZV open reading frame 61 (ORF61). The spliced VZV latency-associated transcript (VLT) is expressed in human TG neurons and encodes a protein with late kinetics in productively infected cells in vitro and in shingles skin lesions. Whereas multiple alternatively spliced VLT isoforms (VLTly) are expressed during lytic infection, a single unique VLT isoform, which specifically suppresses ORF61 gene expression in co-transfected cells, predominates in latently VZV-infected human TG. The discovery of VLT links VZV with the other better characterized human and animal neurotropic alphaherpesviruses and provides insights into VZV latency.


Subject(s)
Herpes Zoster/virology , Herpesvirus 3, Human/genetics , RNA, Antisense/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , Viral Proteins/genetics , Virus Latency , Animals , Chromosome Mapping , DNA, Viral/genetics , DNA, Viral/metabolism , Genome, Viral , Herpes Zoster/pathology , Herpesvirus 3, Human/metabolism , Herpesvirus 3, Human/pathogenicity , High-Throughput Nucleotide Sequencing , Humans , Neurons/pathology , Neurons/virology , RNA Splicing , RNA, Antisense/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism , Skin/pathology , Skin/virology , Trigeminal Ganglion/pathology , Trigeminal Ganglion/virology , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...