Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 135(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35502723

ABSTRACT

The mammary gland epithelial tree contains two distinct cell populations, luminal and basal. The investigation of how this heterogeneity is developed and how it influences tumorigenesis has been hampered by the need to perform studies on these populations using animal models. Comma-1D is an immortalized mouse mammary epithelial cell line that has unique morphogenetic properties. By performing single-cell RNA-seq studies, we found that Comma-1D cultures consist of two main populations with luminal and basal features, and a smaller population with mixed lineage and bipotent characteristics. We demonstrated that multiple transcription factors associated with the differentiation of the mammary epithelium in vivo also modulate this process in Comma-1D cultures. Additionally, we found that only cells with luminal features were able to acquire transformed characteristics after an oncogenic HER2 (also known as ERBB2) mutant was introduced in their genomes. Overall, our studies characterize, at a single-cell level, the heterogeneity of the Comma-1D cell line and illustrate how Comma-1D cells can be used as an experimental model to study both the differentiation and the transformation processes in vitro.


Subject(s)
Breast Neoplasms , Cell Line , Mammary Glands, Animal , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Epithelial Cells , Female , Mammary Glands, Animal/cytology , Mice , Single-Cell Analysis
2.
EMBO Rep ; 22(12): e53201, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34633138

ABSTRACT

During the female lifetime, the expansion of the epithelium dictated by the ovarian cycles is supported by a transient increase in the mammary epithelial stem cell population (MaSCs). Notably, activation of Wnt/ß-catenin signaling is an important trigger for MaSC expansion. Here, we report that the miR-424/503 cluster is a modulator of canonical Wnt signaling in the mammary epithelium. We show that mammary tumors of miR-424(322)/503-depleted mice exhibit activated Wnt/ß-catenin signaling. Importantly, we show a strong association between miR-424/503 deletion and breast cancers with high levels of Wnt/ß-catenin signaling. Moreover, miR-424/503 cluster is required for Wnt-mediated MaSC expansion induced by the ovarian cycles. Lastly, we show that miR-424/503 exerts its function by targeting two binding sites at the 3'UTR of the LRP6 co-receptor and reducing its expression. These results unveil an unknown link between the miR-424/503, regulation of Wnt signaling, MaSC fate, and tumorigenesis.


Subject(s)
Epithelium , Low Density Lipoprotein Receptor-Related Protein-6 , Mammary Glands, Animal/cytology , MicroRNAs , Wnt Signaling Pathway , Animals , Breast Neoplasms , Carcinogenesis , Cell Line, Tumor , Epithelial Cells/cytology , Epithelium/metabolism , Female , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Menstrual Cycle , Mice , MicroRNAs/genetics , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...