Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(18): 186203, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759161

ABSTRACT

Spectroscopy of correlated electron pairs was employed to investigate the energy dissipation process, as well as the transport and the emission of low-energy electrons on a polymethylmethacrylate surface, providing secondary electron spectra causally related to the energy loss of the primary. Two groups are identified in the cascade of slow electrons, corresponding to different stages in the energy dissipation process. The characteristic lengths for attenuation due to collective excitations and momentum relaxation are quantified for both groups and are found to be distinctly different: λ_{1}=(12±2) Å and λ_{2}=(62±11) Å. The results strongly contradict the commonly employed model of exponential attenuation with the electron inelastic mean free path as characteristic length, but they essentially agree with a theory used for decades in astrophysics and neutron transport, albeit with characteristic lengths expressed in units of angstroms rather than light-years.

2.
Nanomaterials (Basel) ; 11(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34578750

ABSTRACT

The detailed examination of electron scattering in solids is of crucial importance for the theory of solid-state physics, as well as for the development and diagnostics of novel materials, particularly those for micro- and nanoelectronics. Among others, an important parameter of electron scattering is the inelastic mean free path (IMFP) of electrons both in bulk materials and in thin films, including 2D crystals. The amount of IMFP data available is still not sufficient, especially for very slow electrons and for 2D crystals. This situation motivated the present study, which summarizes pilot experiments for graphene on a new device intended to acquire electron energy-loss spectra (EELS) for low landing energies. Thanks to its unique properties, such as electrical conductivity and transparency, graphene is an ideal candidate for study at very low energies in the transmission mode of an electron microscope. The EELS are acquired by means of the very low-energy electron microspectroscopy of 2D crystals, using a dedicated ultra-high vacuum scanning low-energy electron microscope equipped with a time-of-flight (ToF) velocity analyzer. In order to verify our pilot results, we also simulate the EELS by means of density functional theory (DFT) and the many-body perturbation theory. Additional DFT calculations, providing both the total density of states and the band structure, illustrate the graphene loss features. We utilize the experimental EELS data to derive IMFP values using the so-called log-ratio method.

3.
Phys Rev Lett ; 125(19): 196603, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33216568

ABSTRACT

Two-particle spectroscopy with correlated electron pairs is used to establish the causal link between the secondary electron spectrum, the (π+σ) plasmon peak, and the unoccupied band structure of highly oriented pyrolytic graphite. The plasmon spectrum is resolved with respect to the involved interband transitions and clearly exhibits final state effects, in particular due to the energy gap between the interlayer resonances along the ΓA direction. The corresponding final state effects can also be identified in the secondary electron spectrum. Interpretation of the results is performed on the basis of density-functional theory and tight-binding calculations. Excitation of the plasmon perturbs the symmetry of the system and leads to hybridization of the interlayer resonances with atomlike σ^{*} bands along the ΓA direction. These hybrid states have a high density of states as well as sufficient mobility along the graphite c axis leading to the sharp ∼3 eV resonance in the spectrum of emitted secondary electrons reported throughout the literature.

4.
J Phys Chem C Nanomater Interfaces ; 120(42): 24070-24079, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27818719

ABSTRACT

We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) inter-laboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure water and; particles dried onto a silicon wafer. Participants prepared and analyzed these samples using either X-ray photoelectron spectroscopy (XPS) or low energy ion scattering (LEIS). Careful data analysis revealed some significant sources of discrepancy, particularly for XPS. Degradation during transportation, storage or sample preparation resulted in a variability in thickness of 53 %. The calculation method chosen by XPS participants contributed a variability of 67 %. However, variability of 12 % was achieved for the samples deposited using a single method and by choosing photoelectron peaks that were not adversely affected by instrumental transmission effects. The study identified a need for more consistency in instrumental transmission functions and relative sensitivity factors, since this contributed a variability of 33 %. The results from the LEIS participants were more consistent, with variability of less than 10 % in thickness and this is mostly due to a common method of data analysis. The calculation was performed using a model developed for uniform, flat films and some participants employed a correction factor to account for the sample geometry, which appears warranted based upon a simulation of LEIS data from one of the participants and comparison to the XPS results.

5.
Beilstein J Nanotechnol ; 6: 1260-7, 2015.
Article in English | MEDLINE | ID: mdl-26171301

ABSTRACT

The aim of the present overview article is to raise awareness of an essential aspect that is usually not accounted for in the modelling of electron transport for focused-electron-beam-induced deposition (FEBID) of nanostructures: Surface excitations are on the one hand responsible for a sizeable fraction of the intensity in reflection-electron-energy-loss spectra for primary electron energies of up to a few kiloelectronvolts and, on the other hand, they play a key role in the emission of secondary electrons from solids, regardless of the primary energy. In this overview work we present a general perspective of recent works on the subject of surface excitations and on low-energy electron transport, highlighting the most relevant aspects for the modelling of electron transport in FEBID simulations.

6.
Phys Rev Lett ; 110(8): 086110, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23473176

ABSTRACT

Supersurface electron scattering, i.e., electron energy losses and associated deflections in vacuum above the surface of a medium, is shown to contribute significantly to electron spectra. We have obtained experimental verification (in absolute units) of theoretical predictions that the angular distribution of the supersurface backscattering probability exhibits strong oscillations which are anticorrelated with the generalized Ramsauer-Townsend minima in the backscattering probability. We have investigated 500-eV electron backscattering from an Au surface for an incidence angle of 70° and scattering angles between 37° and 165°. After removing the contribution of supersurface scattering from the experimental data, the resulting angular and energy distribution agrees with the Landau-Goudsmit-Saunderson (LGS) theory, which was proposed about 60 years ago, while the raw data are anticorrelated with LGS theory. This result implies that supersurface scattering is an essential phenomenon for quantitative understanding of electron spectra.

8.
Fitoterapia ; 81(8): 1142-6, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20659535

ABSTRACT

Flavonoids are dietary components and the most ubiquitous phenolic compounds found in nature, showing a range of pharmacological activities including antiviral action. This study describes the antiviral screening of 60 different flavones and flavonols against human rotavirus (Wa-1 strain) as well as their cytotoxicity in MA104 cells. Cytotoxicity was investigated by cell morphology assessment and antirotavirus activity by cytopathic effect inhibition. Results were expressed as CC(50) and IC(50), respectively, in order to calculate the selectivity index (SI = CC(50)/IC(50)) of each compound. Structure-activity relationships (SAR) were proposed based on antirotavirus activity.


Subject(s)
Antiviral Agents/pharmacology , Flavonoids/pharmacology , Rotavirus/drug effects , Animals , Antiviral Agents/chemistry , Cell Line , Flavonoids/chemistry , Inhibitory Concentration 50 , Molecular Structure , Structure-Activity Relationship
9.
Phys Rev Lett ; 94(3): 038302, 2005 Jan 28.
Article in English | MEDLINE | ID: mdl-15698330

ABSTRACT

The collision statistics of the energy dissipation of Auger and photoelectrons emitted from an amorphized Si(100) surface is studied by measuring the Si 2p photoelectron line as well as the first plasmon loss peak in coincidence with the Si-LVV Auger transition and the associated first plasmon loss. The Si 2p plasmon intensity decreases when measured in coincidence with the Si-LVV peak. If measured in coincidence with the Si-LVV plasmon the decrease is significantly smaller. The results agree quantitatively with calculations accounting for surface, volume, and intrinsic losses as well as elastic scattering in a random medium. In this way one can determine the average emission depth of individual electrons by means of Auger photoelectron coincidence spectroscopy, which therefore constitutes a unique tool to investigate interfaces at the nanoscale level.

10.
Water Res ; 36(6): 1547-55, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11996343

ABSTRACT

The effect of long-term stagnation on copper corrosion by-product release and corrosion rates was studied in pipe-rigs according to the German standard DIN 50931, Part 1. The analysis of the water phase was supplemented by surface analysis of corrosion scales. Copper concentration during stagnation did not follow a solubility process. The characteristic curves obtained can be explained by subsequent copper release and copper refixation processes. Oxygen consumption can be described by the first-order kinetic rate law. The corrosion scales consisted of cuprite (Cu2O) and malachite (CuCO3 x Cu(OH)2). Malachite grew in well-defined crystals during stagnation, served as sink for dissolved copper and did not protect the pipe against corrosion attack. Copper concentrations measured after long-term stagnation (up to 122 h) correspond to the solubility of malachite in the testwater.


Subject(s)
Copper/analysis , Copper/chemistry , Water Pollution, Chemical/analysis , Corrosion , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron , Oxidation-Reduction , Oxygen/chemistry , Water Supply/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...