Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Synth Biol ; 9(8): 2154-2161, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32649182

ABSTRACT

Short (15-30 residue) chains of amino acids at the amino termini of expressed proteins known as signal peptides (SPs) specify secretion in living cells. We trained an attention-based neural network, the Transformer model, on data from all available organisms in Swiss-Prot to generate SP sequences. Experimental testing demonstrates that the model-generated SPs are functional: when appended to enzymes expressed in an industrial Bacillus subtilis strain, the SPs lead to secreted activity that is competitive with industrially used SPs. Additionally, the model-generated SPs are diverse in sequence, sharing as little as 58% sequence identity to the closest known native signal peptide and 73% ± 9% on average.


Subject(s)
Machine Learning , Protein Sorting Signals , Area Under Curve , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Databases, Protein , ROC Curve
2.
EMBO J ; 39(18): e104081, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32500941

ABSTRACT

CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form-II and form-II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s-1 -sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.


Subject(s)
Data Mining , Databases, Nucleic Acid , Ribulose-Bisphosphate Carboxylase , Isoenzymes/classification , Isoenzymes/genetics , Ribulose-Bisphosphate Carboxylase/classification , Ribulose-Bisphosphate Carboxylase/genetics
3.
PLoS Biol ; 17(3): e3000182, 2019 03.
Article in English | MEDLINE | ID: mdl-30925180

ABSTRACT

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation.


Subject(s)
Biological Evolution , Escherichia coli/metabolism , Humans , Models, Genetic , Mutation/genetics , Saccharomyces cerevisiae/metabolism , Temperature
4.
Nat Commun ; 8(1): 1705, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29167457

ABSTRACT

Understanding the evolution of a new metabolic capability in full mechanistic detail is challenging, as causative mutations may be masked by non-essential "hitchhiking" mutations accumulated during the evolutionary trajectory. We have previously used adaptive laboratory evolution of a rationally engineered ancestor to generate an Escherichia coli strain able to utilize CO2 fixation for sugar synthesis. Here, we reveal the genetic basis underlying this metabolic transition. Five mutations are sufficient to enable robust growth when a non-native Calvin-Benson-Bassham cycle provides all the sugar-derived metabolic building blocks. These mutations are found either in enzymes that affect the efflux of intermediates from the autocatalytic CO2 fixation cycle toward biomass (prs, serA, and pgi), or in key regulators of carbon metabolism (crp and ppsR). Using suppressor analysis, we show that a decrease in catalytic capacity is a common feature of all mutations found in enzymes. These findings highlight the enzymatic constraints that are essential to the metabolic stability of autocatalytic cycles and are relevant to future efforts in constructing non-native carbon fixation pathways.


Subject(s)
Carbon Dioxide/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Sugars/metabolism , Adaptation, Physiological/genetics , Biomass , Carbohydrate Metabolism/genetics , Carbon Cycle/genetics , Cyclic AMP Receptor Protein/genetics , Cyclic AMP Receptor Protein/metabolism , Directed Molecular Evolution , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Knockout Techniques , Genes, Bacterial , Genes, Suppressor , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Models, Biological , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Mutation , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Photosynthesis/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Ribose-Phosphate Pyrophosphokinase/genetics , Ribose-Phosphate Pyrophosphokinase/metabolism
5.
Cell ; 166(1): 115-25, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27345370

ABSTRACT

Can a heterotrophic organism be evolved to synthesize biomass from CO2 directly? So far, non-native carbon fixation in which biomass precursors are synthesized solely from CO2 has remained an elusive grand challenge. Here, we demonstrate how a combination of rational metabolic rewiring, recombinant expression, and laboratory evolution has led to the biosynthesis of sugars and other major biomass constituents by a fully functional Calvin-Benson-Bassham (CBB) cycle in E. coli. In the evolved bacteria, carbon fixation is performed via a non-native CBB cycle, while reducing power and energy are obtained by oxidizing a supplied organic compound (e.g., pyruvate). Genome sequencing reveals that mutations in flux branchpoints, connecting the non-native CBB cycle to biosynthetic pathways, are essential for this phenotype. The successful evolution of a non-native carbon fixation pathway, though not yet resulting in net carbon gain, strikingly demonstrates the capacity for rapid trophic-mode evolution of metabolism applicable to biotechnology. PAPERCLIP.


Subject(s)
Carbon Dioxide/metabolism , Directed Molecular Evolution , Escherichia coli/genetics , Escherichia coli/metabolism , Gluconeogenesis , Metabolic Networks and Pathways , Autotrophic Processes , Carbohydrates/biosynthesis , Escherichia coli/growth & development , Mass Spectrometry
6.
Sci Rep ; 6: 20224, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26831574

ABSTRACT

Contamination susceptibility, water usage, and inability to utilize 5-carbon sugars and disaccharides are among the major obstacles in industrialization of sustainable biorefining. Extremophilic thermophiles and acidophiles are being researched to combat these problems, but organisms which answer all the above problems have yet to emerge. Here, we present engineering of the unexplored, extreme alkaliphile Bacillus marmarensis as a platform for new bioprocesses which meet all these challenges. With a newly developed transformation protocol and genetic tools, along with optimized RBSs and antisense RNA, we engineered B. marmarensis to produce ethanol at titers of 38 g/l and 65% yields from glucose in unsterilized media. Furthermore, ethanol titers and yields of 12 g/l and 50%, respectively, were produced from cellobiose and xylose in unsterilized seawater and algal-contaminated wastewater. As such, B. marmarensis presents a promising approach for the contamination-resistant biorefining of a wide range of carbohydrates in unsterilized, non-potable seawater.


Subject(s)
Bacillus/physiology , Biotransformation , Metabolic Engineering , Wastewater , Biocatalysis , Carbohydrate Metabolism , Ethanol/metabolism , Fermentation , Hydrogen-Ion Concentration
7.
Metab Eng ; 23: 53-61, 2014 May.
Article in English | MEDLINE | ID: mdl-24566040

ABSTRACT

The non-recyclable use of nitrogen fertilizers in microbial production of fuels and chemicals remains environmentally detrimental. Conversion of protein wastes into biofuels and ammonia by engineering nitrogen flux in Escherichia coli has been demonstrated as a method to reclaim reduced-nitrogen and curb its environmental deposition. However, protein biomass requires a proteolysis process before it can be taken up and converted by any microbe. Here, we metabolically engineered Bacillus subtilis to hydrolyze polypeptides through its secreted proteases and to convert amino acids into advanced biofuels and ammonia fertilizer. Redirection of B. subtilis metabolism for amino-acid conversion required inactivation of the branched-chain amino-acid (BCAA) global regulator CodY. Additionally, the lipoamide acyltransferase (bkdB) was deleted to prevent conversion of branched-chain 2-keto acids into their acyl-CoA derivatives. With these deletions and heterologous expression of a keto-acid decarboxylase and an alcohol dehydrogenase, the final strain produced biofuels and ammonia from an amino-acid media with 18.9% and 46.6% of the maximum theoretical yield. The process was also demonstrated on several waste proteins. The results demonstrate the feasibility of direct microbial conversion of polypeptides into sustainable products.


Subject(s)
Ammonia/metabolism , Bacillus subtilis , Biofuels , Proteins/metabolism , Water Pollutants/metabolism , Water Purification/methods , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Metabolic Engineering/methods , Water Pollution
8.
Genome Announc ; 1(6)2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24285666

ABSTRACT

Bacillus marmarensis strain DSM 21297 is an extreme obligate alkaliphile able to grow in medium up to pH 12.5. A whole-shotgun strategy and de novo assembly led to the generation of a 4-Mbp genome of this strain. The genome features alkaliphilic adaptations and pathways for n-butanol and poly(3-hydroxybutyrate) synthesis.

9.
Appl Microbiol Biotechnol ; 97(4): 1397-406, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23296497

ABSTRACT

Threats to stable oil supplies and concerns over environmental emissions have pushed for renewable biofuel developments to minimize dependence on fossil resources. Recent biofuel progress has moved towards fossil resource-independent carbon cycles, but environmental issues regarding use of nitrogen fertilizers have not been addressed on a global scale. The recently demonstrated conversion of waste protein biomass into advanced biofuels and renewable chemicals, while recycling nitrogen fertilizers, offers a glimpse of the efforts needed to balance the nitrogen cycle at scale. In general, the catabolism of protein into biofuels is challenging because of physiological regulation and thermodynamic limitations. This conversion became possible with metabolic engineering around ammonia assimilation, intracellular nitrogen flux, and quorum sensing. This review highlights the metabolic engineering solutions in transforming those cellular processes into driving forces for the high yield of chemical products from protein.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Biofuels/microbiology , Fertilizers/analysis , Metabolic Engineering , Nitrogen/metabolism , Organic Chemicals/metabolism , Proteins/metabolism , Recycling/methods , Biofuels/analysis , Proteins/genetics
10.
Science ; 335(6076): 1596, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22461604

ABSTRACT

One of the major challenges in using electrical energy is the efficiency in its storage. Current methods, such as chemical batteries, hydraulic pumping, and water splitting, suffer from low energy density or incompatibility with current transportation infrastructure. Here, we report a method to store electrical energy as chemical energy in higher alcohols, which can be used as liquid transportation fuels. We genetically engineered a lithoautotrophic microorganism, Ralstonia eutropha H16, to produce isobutanol and 3-methyl-1-butanol in an electro-bioreactor using CO(2) as the sole carbon source and electricity as the sole energy input. The process integrates electrochemical formate production and biological CO(2) fixation and higher alcohol synthesis, opening the possibility of electricity-driven bioconversion of CO(2) to commercial chemicals.


Subject(s)
Biofuels , Butanols/metabolism , Carbon Dioxide/metabolism , Cupriavidus necator/genetics , Cupriavidus necator/metabolism , Pentanols/metabolism , Bioreactors , Cupriavidus necator/growth & development , Electricity , Electrochemical Techniques , Electrodes , Formates/metabolism , Genes, Bacterial , Genetic Engineering
11.
Curr Opin Biotechnol ; 23(3): 406-13, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22054644

ABSTRACT

Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements.


Subject(s)
Biofuels , Fertilizers , Nitrogen/metabolism , Biofuels/economics , Biomass , Carbon Cycle , Fertilizers/economics , Plants/metabolism , Recycling
12.
Beilstein J Org Chem ; 7: 1141-9, 2011.
Article in English | MEDLINE | ID: mdl-21915219

ABSTRACT

The performance of the ThalesNano H-Cube(®), a commercial packed bed flow hydrogenator, was evaluated in the context of small scale reaction screening and optimization. A model reaction, the reduction of styrene to ethylbenzene through a 10% Pd/C catalyst bed, was used to examine performance at various pressure settings, over sequential runs, and with commercial catalyst cartridges. In addition, the consistency of the hydrogen flow was indirectly measured by in-line UV spectroscopy. Finally, system contamination due to catalyst leaching, and the resolution of this issue, is described. The impact of these factors on the run-to-run reproducibility of the H-Cube(®) reactor for screening and reaction optimization is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...