Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Solid Earth ; 125(9): e2020JB019980, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33042724

ABSTRACT

Large-scale subsidence due to aquifer-overdraft is an ongoing hazard in the San Joaquin Valley. Subsidence continues to cause damage to infrastructure and increases the risk of extensional fissures.Here, we use InSAR-derived vertical land motion (VLM) to model the volumetric strain rate due to groundwater storage change during the 2007-2010 drought in the San Joaquin Valley, Central Valley, California. We then use this volumetric strain rate model to calculate surface tensile stress in order to predict regions that are at the highest risk for hazardous tensile surface fissures. We find a maximum volumetric strain rate of -232 microstrain/yr at a depth of 0 to 200 m in Tulare and Kings County, California. The highest risk of tensile fissure development occurs at the periphery of the largest subsiding zones, particularly in Tulare County and Merced County. Finally, we assume that subsidence is likely due to aquifer pressure change, which is calculated using groundwater level changes observed at 300 wells during this drought. We combine pressure data from selected wells with our volumetric strain maps to estimate the quasi-static bulk modulus, K, a poroelastic parameter applicable when pressure change within the aquifer is inducing volumetric strain. This parameter is reflective of a slow deformation process and is one to two orders of magnitude lower than typical values for the bulk modulus found using seismic velocity data. The results of this study highlight the importance of large-scale, high-resolution VLM measurements in evaluating aquifer system dynamics, hazards associated with overdraft, and in estimating important poroelastic parameters.

2.
Sci Adv ; 6(31): eaba4551, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32789170

ABSTRACT

Coastal vertical land motion affects projections of sea-level rise, and subsidence exacerbates flooding hazards. Along the ~1350-km California coastline, records of high-resolution vertical land motion rates are scarce due to sparse instrumentation, and hazards to coastal communities are underestimated. Here, we considered a ~100-km-wide swath of land along California's coast and performed a multitemporal interferometric synthetic aperture radar (InSAR) analysis of large datasets, obtaining estimates of vertical land motion rates for California's entire coast at ~100-m dimensions-a ~1000-fold resolution improvement to the previous record. We estimate between 4.3 million and 8.7 million people in California's coastal communities, including 460,000 to 805,000 in San Francisco, 8000 to 2,300,00 in Los Angeles, and 2,000,000 to 2,300,000 in San Diego, are exposed to subsidence. The unprecedented detail and submillimeter accuracy resolved in our vertical land motion dataset can transform the analysis of natural and anthropogenic changes in relative sea-level and associated hazards.

3.
Sci Adv ; 5(6): eaav8038, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31206018

ABSTRACT

In a study by Murray and Lohman (M&L), the authors suggest that remote sensing data are useful for monitoring land subsidence due to aquifer system compaction. We agree. To infer aquifer dynamics, we provide a more detailed and joint analysis of deformation and groundwater data. Investigating well data in the Tulare Basin, we find that groundwater levels stabilized before 2015 and show that M&L's observed continued subsidence through July 2016 is likely caused by the delayed compaction of the aquitard. Our analysis suggests the observed 2017 transient uplift is not due to recharge of the aquifer system after heavy winter rainfall because it requires an unrealistic vertical hydraulic gradient nearly five orders of magnitude larger than that typical of Tulare Basin. We find that, regardless of the amount of rainfall, transient annual uplifts of ~3 cm occur in May to June. Using an elastic skeletal storage coefficient of 5 × 10-3, we link this ground uplift to annual groundwater level changes.

4.
J Geophys Res Solid Earth ; 124(3): 3127-3143, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31218156

ABSTRACT

California's millennium drought of 2012-2015 severely impacted the Central Valley aquifer system and caused permanent loss of groundwater and aquifer storage capacity. To quantify these impacts within the southern San Joaquin Valley, we analyze various complementary measurements, including gravity changes from Gravity Recovery and Climate Experiment (GRACE) satellites; vertical land motion from Global Positioning System, interferometric synthetic aperture radar, and extensometer; and groundwater level records. The interferometric data set acquired by the Sentinel-1 satellite only spans the period January 2015 and October 2017, while the other data sets span the entire drought period. Using GRACE observations, we find an average groundwater loss of 6.1 ± 2.3 km3/year as a lower bound estimate for the San Joaquin Valley, amounting to a total volume of 24.2 ± 9.3 km3 lost during the period October 2011 to September 2015. This is consistent with the total volume of 29.25 ± 8.7 km3, estimated using only Global Positioning System deformation data. Our results highlight the advantage of using vertical land motion data to evaluate groundwater loss and thus fill the gaps between GRACE and GRACE-Follow-On missions and complement their estimates. We further determine that 0.4-3.25% of the aquifer system storage capacity is permanently lost during this drought period. Comparing groundwater level and vertical land motion data following September 2015, we determine an equilibration time of 0.5-1.5 years for groundwater levels within aquitard and aquifer units, during which residual compaction of aquitard and land subsidence continues beyond the drought period. We suggest that such studies can advance the knowledge of evolving groundwater resources, enabling managers and decision makers to better assess water demand and supply during and in-between drought periods.

5.
Water Resour Res ; 54(7): 4449-4460, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30197456

ABSTRACT

The accelerated rate of decline in groundwater levels across California's Central Valley results from overdrafting and low rates of natural recharge and is exacerbated by droughts. The lack of observations with an adequate spatiotemporal resolution to constrain the evolution of groundwater resources poses severe challenges to water management efforts. Here we present SAR interferometric measurements of high-resolution vertical land motion across the valley, revealing multiscale patterns of aquifer hydrogeological properties and groundwater storage change. Investigating the depletion and degradation of the aquifer-system during 2007-2010, when the entire valley experienced a severe drought, we find that ~2% of total aquifer-system storage was permanently lost, owing to irreversible compaction of the system. Over this period, the seasonal groundwater storage change amplitude of 10.11 ± 2.5 km3 modulates a long-term groundwater storage decline of 21.32 ± 7.2 km3. Estimates for subbasins show more complex patterns, most likely associated with local hydrogeology, recharge, demand, and underground flow. Presented measurements of aquifer-system compaction provide a more complete understanding of groundwater dynamics and can potentially be used to improve water security.

SELECTION OF CITATIONS
SEARCH DETAIL
...