Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Epidemics ; 47: 100770, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38761432

ABSTRACT

In the context of infectious diseases, the dynamic interplay between ever-changing host populations and viral biology demands a more flexible modeling approach than common fixed correlations. Embracing random-effects regression models allows for a nuanced understanding of the intricate ecological and evolutionary dynamics underlying complex phenomena, offering valuable insights into disease progression and transmission patterns. In this article, we employed a random-effects regression to model an observed decreasing median plasma viral load (pVL) among individuals with HIV in Mexico City during 2019-2021. We identified how these functional slope changes (i.e. random slopes by year) improved predictions of the observed pVL median changes between 2019 and 2021, leading us to hypothesize underlying ecological and evolutionary factors. Our analysis involved a dataset of pVL values from 7325 ART-naïve individuals living with HIV, accompanied by their associated clinical and viral molecular predictors. A conventional fixed-effects linear model revealed significant correlations between pVL and predictors that evolved over time. However, this fixed-effects model could not fully explain the reduction in median pVL; thus, prompting us to adopt random-effects models. After applying a random effects regression model-with random slopes and intercepts by year-, we observed potential "functional changes" within the local HIV viral population, highlighting the importance of ecological and evolutionary considerations in HIV dynamics: A notably stronger negative correlation emerged between HIV pVL and the CpG content in the pol gene, suggesting a changing immune landscape influenced by CpG-induced innate immune responses that could impact viral load dynamics. Our study underscores the significance of random effects models in capturing dynamic correlations and the crucial role of molecular characteristics like CpG content. By enriching our understanding of changing host-virus interactions and HIV progression, our findings contribute to the broader relevance of such models in infectious disease research. They shed light on the changing interplay between host and pathogen, driving us closer to more effective strategies for managing infectious diseases. SIGNIFICANCE OF THE STUDY: This study highlights a decreasing trend in median plasma viral loads among ART-naïve individuals living with HIV in Mexico City between 2019 and 2021. It uncovers various predictors significantly correlated with pVL, shedding light on the complex interplay between host-virus interactions and disease progression. By employing a random-slopes model, the researchers move beyond traditional fixed-effects models to better capture dynamic correlations and evolutionary changes in HIV dynamics. The discovery of a stronger negative correlation between pVL and CpG content in HIV-pol sequences suggests potential changes in the immune landscape and innate immune responses, opening avenues for further research into adaptive changes and responses to environmental shifts in the context of HIV infection. The study's emphasis on molecular characteristics as predictors of pVL adds valuable insights to epidemiological and evolutionary studies of viruses, providing new avenues for understanding and managing HIV infection at the population level.

2.
Syst Biol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712512

ABSTRACT

Phylogenetic and discrete-trait evolutionary inference depend heavily on an appropriate characterization of the underlying character substitution process. In this paper, we present random-effects substitution models that extend common continuous-time Markov chain models into a richer class of processes capable of capturing a wider variety of substitution dynamics. As these random-effects substitution models often require many more parameters than their usual counterparts, inference can be both statistically and computationally challenging. Thus, we also propose an efficient approach to compute an approximation to the gradient of the data likelihood with respect to all unknown substitution model parameters. We demonstrate that this approximate gradient enables scaling of sampling-based inference, namely Bayesian inference via Hamiltonian Monte Carlo, under random-effects substitution models across large trees and state-spaces. Applied to a dataset of 583 SARS-CoV-2 sequences, an HKY model with random-effects shows strong signals of nonreversibility in the substitution process, and posterior predictive model checks clearly show that it is a more adequate model than a reversible model. When analyzing the pattern of phylogeographic spread of 1441 influenza A virus (H3N2) sequences between 14 regions, a random-effects phylogeographic substitution model infers that air travel volume adequately predicts almost all dispersal rates. A random-effects state-dependent substitution model reveals no evidence for an effect of arboreality on the swimming mode in the tree frog subfamily Hylinae. Simulations reveal that random-effects substitution models can accommodate both negligible and radical departures from the underlying base substitution model. We show that our gradient-based inference approach is over an order of magnitude more time efficient than conventional approaches.

3.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559140

ABSTRACT

Molecular surveillance of viral pathogens and inference of transmission networks from genomic data play an increasingly important role in public health efforts, especially for HIV-1. For many methods, the genetic distance threshold used to connect sequences in the transmission network is a key parameter informing the properties of inferred networks. Using a distance threshold that is too high can result in a network with many spurious links, making it difficult to interpret. Conversely, a distance threshold that is too low can result in a network with too few links, which may not capture key insights into clusters of public health concern. Published research using the HIV-TRACE software package frequently uses the default threshold of 0.015 substitutions/site for HIV pol gene sequences, but in many cases, investigators heuristically select other threshold parameters to better capture the underlying dynamics of the epidemic they are studying. Here, we present a general heuristic scoring approach for tuning a distance threshold adaptively, which seeks to prevent the formation of giant clusters. We prioritize the ratio of the sizes of the largest and the second largest cluster, maximizing the number of clusters present in the network. We apply our scoring heuristic to outbreaks with different characteristics, such as regional or temporal variability, and demonstrate the utility of using the scoring mechanism's suggested distance threshold to identify clusters exhibiting risk factors that would have otherwise been more difficult to identify. For example, while we found that a 0.015 substitutions/site distance threshold is typical for US-like epidemics, recent outbreaks like the CRF07_BC subtype among men who have sex with men (MSM) in China have been found to have a lower optimal threshold of 0.005 to better capture the transition from injected drug use (IDU) to MSM as the primary risk factor. Alternatively, in communities surrounding Lake Victoria in Uganda, where there has been sustained hetero-sexual transmission for many years, we found that a larger distance threshold is necessary to capture a more risk factor-diverse population with sparse sampling over a longer period of time. Such identification may allow for more informed intervention action by respective public health officials.

4.
Clin Infect Dis ; 78(5): 1204-1213, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38227643

ABSTRACT

BACKGROUND: Infection prevention (IP) measures are designed to mitigate the transmission of pathogens in healthcare. Using large-scale viral genomic and social network analyses, we determined if IP measures used during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic were adequate in protecting healthcare workers (HCWs) and patients from acquiring SARS-CoV-2. METHODS: We performed retrospective cross-sectional analyses of viral genomics from all available SARS-CoV-2 viral samples collected at UC San Diego Health and social network analysis using the electronic medical record to derive temporospatial overlap of infections among related viromes and supplemented with contact tracing data. The outcome measure was any instance of healthcare transmission, defined as cases with closely related viral genomes and epidemiological connection within the healthcare setting during the infection window. Between November 2020 through January 2022, 12 933 viral genomes were obtained from 35 666 patients and HCWs. RESULTS: Among 5112 SARS-CoV-2 viral samples sequenced from the second and third waves of SARS-CoV-2 (pre-Omicron), 291 pairs were derived from persons with a plausible healthcare overlap. Of these, 34 pairs (12%) were phylogenetically linked: 19 attributable to household and 14 to healthcare transmission. During the Omicron wave, 2106 contact pairs among 7821 sequences resulted in 120 (6%) related pairs among 32 clusters, of which 10 were consistent with healthcare transmission. Transmission was more likely to occur in shared spaces in the older hospital compared with the newer hospital (2.54 vs 0.63 transmission events per 1000 admissions, P < .001). CONCLUSIONS: IP strategies were effective at identifying and preventing healthcare SARS-CoV-2 transmission.


Subject(s)
COVID-19 , Genome, Viral , Health Personnel , SARS-CoV-2 , Humans , COVID-19/transmission , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Retrospective Studies , Cross-Sectional Studies , Male , Female , Adult , Middle Aged , Aged , Social Network Analysis , Contact Tracing , Genomics , Young Adult , Adolescent , Child , Aged, 80 and over , Cross Infection/transmission , Cross Infection/virology , Cross Infection/epidemiology , Child, Preschool
5.
AIDS ; 38(2): 245-254, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37890471

ABSTRACT

OBJECTIVES: This study investigates primary peer-referral engagement (PRE) strategies to assess which strategy results in engaging higher numbers of people with HIV (PWH) who are virally unsuppressed. DESIGN: We develop a modeling study that simulates an HIV epidemic (transmission, disease progression, and viral evolution) over 6 years using an agent-based model followed by simulating PRE strategies. We investigate two PRE strategies where referrals are based on social network strategies (SNS) or sexual partner contact tracing (SPCT). METHODS: We parameterize, calibrate, and validate our study using data from Chicago on Black sexual minority men to assess these strategies for a population with high incidence and prevalence of HIV. For each strategy, we calculate the number of PWH recruited who are undiagnosed or out-of-care (OoC) and the number of direct or indirect transmissions. RESULTS: SNS and SPCT identified 256.5 [95% confidence interval (CI) 234-279] and 15 (95% CI 7-27) PWH, respectively. Of these, SNS identified 159 (95% CI 142-177) PWH OoC and 32 (95% CI 21-43) PWH undiagnosed compared with 9 (95% CI 3-18) and 2 (95% CI 0-5) for SPCT. SNS identified 15.5 (95% CI 6-25) and 7.5 (95% CI 2-11) indirect and direct transmission pairs, whereas SPCT identified 6 (95% CI 0-8) and 5 (95% CI 0-8), respectively. CONCLUSION: With no testing constraints, SNS is the more effective strategy to identify undiagnosed and OoC PWH. Neither strategy is successful at identifying sufficient indirect or direct transmission pairs to investigate transmission networks.


Subject(s)
HIV Infections , Sexual and Gender Minorities , Male , Humans , HIV Infections/epidemiology , Sexual Partners , Social Networking , Contact Tracing
6.
Virus Evol ; 9(2): vead069, 2023.
Article in English | MEDLINE | ID: mdl-38046219

ABSTRACT

Large datasets along with sampling bias represent a challenge for phylodynamic reconstructions, particularly when the study data are obtained from various heterogeneous sources and/or through convenience sampling. In this study, we evaluate the presence of unbalanced sampled distribution by collection date, location, and risk group of human immunodeficiency virus Type 1 Subtype C using a comprehensive subsampling strategy and assess their impact on the reconstruction of the viral spatial and risk group dynamics using phylogenetic comparative methods. Our study shows that a most suitable dataset for ancestral trait reconstruction can be obtained through subsampling by all available traits, particularly using multigene datasets. We also demonstrate that sampling bias is inflated when considerable information for a given trait is unavailable or of poor quality, as we observed for the trait risk group. In conclusion, we suggest that, even if traits are not well recorded, including them deliberately optimizes the representativeness of the original dataset rather than completely excluding them. Therefore, we advise the inclusion of as many traits as possible with the aid of subsampling approaches in order to optimize the dataset for phylodynamic analysis while reducing the computational burden. This will benefit research communities investigating the evolutionary and spatio-temporal patterns of infectious diseases.

7.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745602

ABSTRACT

Zoonotic spillovers of viruses have occurred through the animal trade worldwide. The start of the COVID-19 pandemic was traced epidemiologically to the Huanan Wholesale Seafood Market, the site with the most reported wildlife vendors in the city of Wuhan, China. Here, we analyze publicly available qPCR and sequencing data from environmental samples collected in the Huanan market in early 2020. We demonstrate that the SARS-CoV-2 genetic diversity linked to this market is consistent with market emergence, and find increased SARS-CoV-2 positivity near and within a particular wildlife stall. We identify wildlife DNA in all SARS-CoV-2 positive samples from this stall. This includes species such as civets, bamboo rats, porcupines, hedgehogs, and one species, raccoon dogs, known to be capable of SARS-CoV-2 transmission. We also detect other animal viruses that infect raccoon dogs, civets, and bamboo rats. Combining metagenomic and phylogenetic approaches, we recover genotypes of market animals and compare them to those from other markets. This analysis provides the genetic basis for a short list of potential intermediate hosts of SARS-CoV-2 to prioritize for retrospective serological testing and viral sampling.

8.
PLoS Med ; 20(9): e1004293, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37738247

ABSTRACT

• Human immunodeficiency virus (HIV) drug resistance has implications for antiretroviral treatment strategies and for containing the HIV pandemic because the development of HIV drug resistance leads to the requirement for antiretroviral drugs that may be less effective, less well-tolerated, and more expensive than those used in first-line regimens. • HIV drug resistance studies are designed to determine which HIV mutations are selected by antiretroviral drugs and, in turn, how these mutations affect antiretroviral drug susceptibility and response to future antiretroviral treatment regimens. • Such studies collectively form a vital knowledge base essential for monitoring global HIV drug resistance trends, interpreting HIV genotypic tests, and updating HIV treatment guidelines. • Although HIV drug resistance data are collected in many studies, such data are often not publicly shared, prompting the need to recommend best practices to encourage and standardize HIV drug resistance data sharing. • In contrast to other viruses, sharing HIV sequences from phylogenetic studies of transmission dynamics requires additional precautions as HIV transmission is criminalized in many countries and regions. • Our recommendations are designed to ensure that the data that contribute to HIV drug resistance knowledge will be available without undue hardship to those publishing HIV drug resistance studies and without risk to people living with HIV.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , HIV Infections/drug therapy , HIV Infections/epidemiology , Phylogeny , HIV-1/genetics , Drug Resistance, Viral/genetics , Anti-Retroviral Agents/therapeutic use , Mutation , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use
9.
BMC Infect Dis ; 23(1): 446, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400776

ABSTRACT

BACKGROUND: Due to practical challenges associated with genetic sequencing in low-resource environments, the burden of hepatitis C virus (HCV) in forcibly displaced people is understudied. We examined the use of field applicable HCV sequencing methods and phylogenetic analysis to determine HCV transmission dynamics in internally displaced people who inject drugs (IDPWID) in Ukraine. METHODS: In this cross-sectional study, we used modified respondent-driven sampling to recruit IDPWID who were displaced to Odesa, Ukraine, before 2020. We generated partial and near full length genome (NFLG) HCV sequences using Oxford Nanopore Technology (ONT) MinION in a simulated field environment. Maximum likelihood and Bayesian methods were used to establish phylodynamic relationships. RESULTS: Between June and September 2020, we collected epidemiological data and whole blood samples from 164 IDPWID (PNAS Nexus.2023;2(3):pgad008). Rapid testing (Wondfo® One Step HCV; Wondfo® One Step HIV1/2) identified an anti-HCV seroprevalence of 67.7%, and 31.1% of participants tested positive for both anti-HCV and HIV. We generated 57 partial or NFLG HCV sequences and identified eight transmission clusters, of which at least two originated within a year and a half post-displacement. CONCLUSIONS: Locally generated genomic data and phylogenetic analysis in rapidly changing low-resource environments, such as those faced by forcibly displaced people, can help inform effective public health strategies. For example, evidence of HCV transmission clusters originating soon after displacement highlights the importance of implementing urgent preventive interventions in ongoing situations of forced displacement.


Subject(s)
HIV Infections , Hepatitis C , Substance Abuse, Intravenous , Humans , Hepacivirus/genetics , Ukraine/epidemiology , Cross-Sectional Studies , Phylogeny , Seroepidemiologic Studies , Bayes Theorem , HIV Infections/complications , Substance Abuse, Intravenous/complications , Substance Abuse, Intravenous/epidemiology , Prevalence
10.
bioRxiv ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37502985

ABSTRACT

The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 has led to increased sampling of related sarbecoviruses circulating primarily in horseshoe bats. These viruses undergo frequent recombination and exhibit spatial structuring across Asia. Employing recombination-aware phylogenetic inference on bat sarbecoviruses, we find that the closest-inferred bat virus ancestors of SARS-CoV and SARS-CoV-2 existed just ~1-3 years prior to their emergence in humans. Phylogeographic analyses examining the movement of related sarbecoviruses demonstrate that they traveled at similar rates to their horseshoe bat hosts and have been circulating for thousands of years in Asia. The closest-inferred bat virus ancestor of SARS-CoV likely circulated in western China, and that of SARS-CoV-2 likely circulated in a region comprising southwest China and northern Laos, both a substantial distance from where they emerged. This distance and recency indicate that the direct ancestors of SARS-CoV and SARS-CoV-2 could not have reached their respective sites of emergence via the bat reservoir alone. Our recombination-aware dating and phylogeographic analyses reveal a more accurate inference of evolutionary history than performing only whole-genome or single gene analyses. These results can guide future sampling efforts and demonstrate that viral genomic fragments extremely closely related to SARS-CoV and SARS-CoV-2 were circulating in horseshoe bats, confirming their importance as the reservoir species for SARS viruses.

11.
PNAS Nexus ; 2(3): pgad008, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36896134

ABSTRACT

Internally displaced persons are often excluded from HIV molecular epidemiology surveillance due to structural, behavioral, and social barriers in access to treatment. We test a field-based molecular epidemiology framework to study HIV transmission dynamics in a hard-to-reach and highly stigmatized group, internally displaced people who inject drugs (IDPWIDs). We inform the framework by Nanopore generated HIV pol sequences and IDPWID migration history. In June-September 2020, we recruited 164 IDPWID in Odesa, Ukraine, and obtained 34 HIV sequences from HIV-infected participants. We aligned them to publicly available sequences (N = 359) from Odesa and IDPWID regions of origin and identified 7 phylogenetic clusters with at least 1 IDPWID. Using times to the most recent common ancestors of the identified clusters and times of IDPWID relocation to Odesa, we infer potential post-displacement transmission window when infections likely to happen to be between 10 and 21 months, not exceeding 4 years. Phylogeographic analysis of the sequence data shows that local people in Odesa disproportionally transmit HIV to the IDPWID community. Rapid transmissions post-displacement in the IDPWID community might be associated with slow progression along the HIV continuum of care: only 63% of IDPWID were aware of their status, 40% of those were in antiviral treatment, and 43% of those were virally suppressed. Such HIV molecular epidemiology investigations are feasible in transient and hard-to-reach communities and can help indicate best times for HIV preventive interventions. Our findings highlight the need to rapidly integrate Ukrainian IDPWID into prevention and treatment services following the dramatic escalation of the war in 2022.

12.
ArXiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-36994154

ABSTRACT

Phylogenetic and discrete-trait evolutionary inference depend heavily on an appropriate characterization of the underlying character substitution process. In this paper, we present random-effects substitution models that extend common continuous-time Markov chain models into a richer class of processes capable of capturing a wider variety of substitution dynamics. As these random-effects substitution models often require many more parameters than their usual counterparts, inference can be both statistically and computationally challenging. Thus, we also propose an efficient approach to compute an approximation to the gradient of the data likelihood with respect to all unknown substitution model parameters. We demonstrate that this approximate gradient enables scaling of sampling-based inference, namely Bayesian inference via Hamiltonian Monte Carlo, under random-effects substitution models across large trees and state-spaces. Applied to a dataset of 583 SARS-CoV-2 sequences, an HKY model with random-effects shows strong signals of nonreversibility in the substitution process, and posterior predictive model checks clearly show that it is a more adequate model than a reversible model. When analyzing the pattern of phylogeographic spread of 1441 influenza A virus (H3N2) sequences between 14 regions, a random-effects phylogeographic substitution model infers that air travel volume adequately predicts almost all dispersal rates. A random-effects state-dependent substitution model reveals no evidence for an effect of arboreality on the swimming mode in the tree frog subfamily Hylinae. Simulations reveal that random-effects substitution models can accommodate both negligible and radical departures from the underlying base substitution model. We show that our gradient-based inference approach is over an order of magnitude more time efficient than conventional approaches.

14.
AIDS Res Hum Retroviruses ; 39(5): 241-252, 2023 05.
Article in English | MEDLINE | ID: mdl-36785940

ABSTRACT

Public health surveillance data used in HIV molecular cluster analyses lack contextual information that is available from partner services (PS) data. Integrating these data sources in retrospective analyses can enrich understanding of the risk profile of people in clusters. In this study, HIV molecular clusters were identified and matched to information on partners and other information gleaned at the time of diagnosis, including coinfection with syphilis. We aimed to produce a more complete understanding of molecular cluster membership in Houston, Texas, a city ranking ninth nationally in rate of new HIV diagnoses that may benefit from retrospective matched analyses between molecular and PS data to inform future intervention. Data from PS were matched to molecular HIV records of people newly diagnosed from 2012 to 2018. By conducting analyses in HIV-TRACE (TRAnsmission Cluster Engine) using viral genetic sequences, molecular clusters were detected. Multivariable logistic regression models were used to estimate the association between molecular cluster membership and completion of a PS interview, number of named partners, and syphilis coinfection. Using data from 4,035 people who had a viral genetic sequence and matched PS records, molecular cluster membership was not significantly associated with completion of a PS interview. Among those with sequences who completed a PS interview (n = 3,869), 45.3% (n = 1,753) clustered. Molecular cluster membership was significantly associated with naming 1 or 3+ partners compared with not naming any partners [adjusted odds ratio, aOR: 1.27 (95% confidence interval, CI: 1.08-1.50), p = .003 and aOR: 1.38 (95% CI: 1.06-1.81), p = .02]. Alone, coinfection with syphilis was not significantly associated with molecular cluster membership. Syphilis coinfection was associated with molecular cluster membership when coupled with incarceration [aOR: 1.91 (95% CI: 1.08-3.38), p = .03], a risk for treatment interruption. Enhanced intervention among those with similar profiles, such as people coinfected with other risks, may be warranted.


Subject(s)
Coinfection , HIV Infections , Syphilis , Humans , Coinfection/epidemiology , Retrospective Studies , HIV Infections/epidemiology , Cluster Analysis , Genes, Viral , Syphilis/epidemiology
15.
Sci Rep ; 12(1): 19230, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357480

ABSTRACT

Detection of viral transmission clusters using molecular epidemiology is critical to the response pillar of the Ending the HIV Epidemic initiative. Here, we studied whether inference with an incomplete dataset would influence the accuracy of the reconstructed molecular transmission network. We analyzed viral sequence data available from ~ 13,000 individuals with diagnosed HIV (2012-2019) from Houston Health Department surveillance data with 53% completeness (n = 6852 individuals with sequences). We extracted random subsamples and compared the resulting reconstructed networks versus the full-size network. Increasing simulated completeness was associated with an increase in the number of detected clusters. We also subsampled based on the network node influence in the transmission of the virus where we measured Expected Force (ExF) for each node in the network. We simulated the removal of nodes with the highest and then lowest ExF from the full dataset and discovered that 4.7% and 60% of priority clusters were detected respectively. These results highlight the non-uniform impact of capturing high influence nodes in identifying transmission clusters. Although increasing sequence reporting completeness is the way to fully detect HIV transmission patterns, reaching high completeness has remained challenging in the real world. Hence, we suggest taking a network science approach to enhance performance of molecular cluster detection, augmented by node influence information.


Subject(s)
Epidemics , HIV Infections , Humans , Cluster Analysis , Molecular Epidemiology , Molecular Sequence Data , Phylogeny
16.
Sci Rep ; 12(1): 15749, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36131001

ABSTRACT

The use of real-time genomic epidemiology has enabled the tracking of the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), informing evidence-based public health decision making. Ukraine has experienced four waves of the Coronavirus Disease 2019 (COVID-19) between spring 2020 and spring 2022. However, insufficient capacity for local genetic sequencing limited the potential application of SARS-CoV-2 genomic surveillance for public health response in the country. Herein, we report local sequencing of 103 SARS-CoV-2 genomes from patient samples collected in Kyiv in July-December 2021 using Oxford Nanopore technology. Together with other published Ukrainian SARS-CoV-2 genomes, our data suggest that the third wave of the epidemic in Ukraine (June-December 2021) was dominated by the Delta Variant of Concern (VOC). Our phylogeographic analysis revealed that in summer 2021 Delta VOC was introduced into Ukraine from multiple locations worldwide, with most introductions coming from Central and Eastern European countries. The wide geographic range of Delta introductions coincides with increased volume of travel to Ukraine particularly from locations outside of Europe in summer 2021. This study highlights the need to urgently integrate affordable and easily scaled pathogen sequencing technologies in locations with less developed genomic infrastructure, in order to support local public health decision making.


Subject(s)
COVID-19 , Nanopore Sequencing , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , Ukraine/epidemiology
17.
Nat Commun ; 13(1): 5477, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115862

ABSTRACT

Human herpes simplex virus 2 (HSV-2) is a ubiquitous, slowly evolving DNA virus. HSV-2 has two primary lineages, one found in West and Central Africa and the other found worldwide. Competing hypotheses have been proposed to explain how HSV-2 migrated out-of-Africa (i)HSV-2 followed human migration out-of-Africa 50-100 thousand years ago, or (ii)HSV-2 migrated via the trans-Atlantic slave trade 150-500 years ago. Limited geographic sampling and lack of molecular clock signal has precluded robust comparison. Here, we analyze newly sequenced HSV-2 genomes from Africa to resolve geography and timing of divergence events within HSV-2. Phylogeographic analysis consistently places the ancestor of worldwide dispersal in East Africa, though molecular clock is too slow to be detected using available data. Rates 4.2 × 10-8-5.6 × 10-8 substitutions/site/year, consistent with previous age estimates, suggest a worldwide dispersal 22-29 thousand years ago. Thus, HSV-2 likely migrated with humans from East Africa and dispersed after the Last Glacial Maximum.


Subject(s)
Genome , Herpesvirus 2, Human , Adult , Africa , Base Sequence , Herpesvirus 2, Human/genetics , Humans , Phylogeography , Young Adult
18.
Nat Commun ; 13(1): 4784, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35970983

ABSTRACT

Regional connectivity and land travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the Middle East. By integrating genomic, epidemiological and travel data we show that the source of introductions into Jordan was dynamic across 2020, shifting from intercontinental seeding in the early pandemic to more regional seeding for the travel restrictions period. We show that land travel, particularly freight transport, drove introduction risk during the travel restrictions period. High regional connectivity and land travel also drove Jordan's export risk. Our findings emphasize regional connectedness and land travel as drivers of transmission in the Middle East.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Middle East/epidemiology , Pandemics/prevention & control , Travel
19.
Science ; 377(6609): 960-966, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35881005

ABSTRACT

Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2 , Viral Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Computer Simulation , Genetic Variation , Genomics/methods , Humans , Molecular Epidemiology , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Zoonoses/epidemiology , Viral Zoonoses/virology
20.
Science ; 377(6609): 951-959, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35881010

ABSTRACT

Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 is critical to preventing future zoonotic outbreaks before they become the next pandemic. The Huanan Seafood Wholesale Market in Wuhan, China, was identified as a likely source of cases in early reports, but later this conclusion became controversial. We show here that the earliest known COVID-19 cases from December 2019, including those without reported direct links, were geographically centered on this market. We report that live SARS-CoV-2-susceptible mammals were sold at the market in late 2019 and that within the market, SARS-CoV-2-positive environmental samples were spatially associated with vendors selling live mammals. Although there is insufficient evidence to define upstream events, and exact circumstances remain obscure, our analyses indicate that the emergence of SARS-CoV-2 occurred through the live wildlife trade in China and show that the Huanan market was the epicenter of the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2 , Seafood , Viral Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , China/epidemiology , Humans , SARS-CoV-2/isolation & purification , Seafood/virology , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...