Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 119: 104526, 2021 07.
Article in English | MEDLINE | ID: mdl-33894525

ABSTRACT

Cardiovascular Diseases (CVDs) are the leading cause of death worldwide. Approximately 31% of all global deaths are caused by CVDs, of which 42% are attributable to coronary artery disease (CAD). CAD is characterized by a narrowing of arteries that restricts the normal blood flow. Over time, surgical intervention is required in severe cases of occlusions and includes implantation of autologous vessels. Today synthetic grafts are used successfully as replacements for blood vessels with a diameter larger than 6 mm. However, they often fail as small-diameter blood vessel replacements. This study introduces a new biocomposite material system consisting of unique and long (cm-scale) collagen fibers derived from soft corals embedded within an alginate hydrogel matrix. The new biocomposite layers were used to fabricate grafts, towards developing a new class of tissue-engineered small-diameter blood vessels. These constructs consisted of both circumferentially and longitudinally oriented collagen fibers. The mechanical properties of the grafts were investigated via a new experimental setup constructed in our lab for this purpose, which applied internal pressure levels of 0-300 mmHg. Similar to native coronary arteries, the biocomposite tubes demonstrated a compliance of 4.88 ± 0.99%/100 mmHg for a physiologic pressure range of 80-120 mmHg. Furthermore, a numerical finite element simulation model is proposed to generate the overall mechanical response of the construct. It is composed of axial and circumferential fibers embedded within the continuum alginate elements. Good prediction is demonstrated when compared with the measured pressure-strain response. Moreover, we examined biocompatibility and cell growth on the collagen fibers. Fibroblast cells proliferated during the experiment that lasted for 32 days and showed aligned configuration with the collagen fiber orientation. The novelty of this study is manifested in the use of naturally derived coral-based long collagen fibers for the development of a new class of tissue-engineered grafts. The proposed novel biocomposite graft demonstrated both mechanical and biological compatibility and can be further developed for small-diameter blood-vessel replacement.


Subject(s)
Anthozoa , Vascular Grafting , Animals , Biomimetics , Blood Vessel Prosthesis , Collagen , Tissue Engineering
2.
Tissue Eng Part A ; 27(3-4): 187-200, 2021 02.
Article in English | MEDLINE | ID: mdl-32524890

ABSTRACT

There is a growing need for biomaterial scaffolds that support engineering of soft tissue substitutes featuring structure and mechanical properties similar to those of the native tissue. This work introduces a new biomaterial system that is based on centimeter-long collagen fibers extracted from Sarcophyton soft corals, wrapped around frames to create aligned fiber arrays. The collagen arrays displayed hyperelastic and viscoelastic mechanical properties that resembled those of collagenous-rich tissues. Cytotoxicity tests demonstrated that the collagen arrays were nontoxic to fibroblast cells. In addition, fibroblast cells seeded on the collagen arrays demonstrated spreading and increased growth for up to 40 days, and their orientation followed that of the aligned fibers. The possibility to combine the collagen cellular arrays with poly(ethylene glycol) diacrylate (PEG-DA) hydrogel, to create integrated biocomposites, was also demonstrated. This study showed that coral collagen fibers in combination with a hydrogel can support biological tissue-like growth, with predefined orientation over a long period of time in culture. As such, it is an attractive scaffold for the construction of various engineered tissues to match their native oriented morphology.


Subject(s)
Anthozoa , Tissue Scaffolds , Animals , Biocompatible Materials , Collagen , Tissue Engineering
3.
J Mech Behav Biomed Mater ; 94: 298-307, 2019 06.
Article in English | MEDLINE | ID: mdl-30951990

ABSTRACT

The aging western society is heavily afflicted with intervertebral disc (IVD) degeneration. Replacement or repair of the degenerated IVD with an artificial bio-mimetic construct is one of the challenges of future research due to its complex structure and unique biomechanical function. Herein, biocomposite laminates made of long collagen fibers in unidirectional (-1.3 ±â€¯2.1°) and angle-plied ±â€¯30° orientations (30.4 ±â€¯6.4 and -29.8 ±â€¯4.5), embedded in alginate hydrogel, were fabricated to mimic the form of single annulus fibrosus (AF) lamella and the circumferential AF, respectively. The mechanical behavior of the composites was measured and compared with in vitro existing data of the human native AF as well as with new data obtained from ovine and bovine specimens. The mechanical behavior was found to reproduce the full stress- strain behavior of the human AF single lamella in several regions of the AF and the Young's modulus was 28.3 ±â€¯8.6 MPa. Moreover, the modulus of the angle-plied laminates was 16.8 ±â€¯2.9 MPa, which is approximately 5% less than the in vitro data. The full stress-strain behavior was also compared with bovine and ovine circumferential AF samples and found to be very similar, with a difference in the modulus of 4.1% and 19.7%, respectively. Moreover, an FE model of the L3-L4 functional spinal unit (FSU) was developed and calibrated to evaluate the mechanical ability of the biocomposite to be used as an AF substitute under physiological IVD loading modes. The biocomposite demonstrated a good ability to mimic the stiffness of the native tissue under physiologic loading modes as flexion, extension, lateral bending and compression, but was too flexible under torsion. It was found that the proposed biomimetics AF design resulted in a compatible function in several mechanical levels, which holds great potential to be used as a viable AF replacement towards full IVD engineering.


Subject(s)
Annulus Fibrosus , Biomimetics , Tissue Engineering , Finite Element Analysis , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...