Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 29(20): 5426-40, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19687300

ABSTRACT

HMGA chromatin proteins, a family of gene regulatory factors found at only low concentrations in normal cells, are almost universally overexpressed in cancer cells. HMGA proteins are located in the nuclei of normal cells except during the late S/G(2) phases of the cell cycle, when HMGA1, one of the members of the family, reversibly migrates to the mitochondria, where it binds to mitochondrial DNA (mtDNA). In many cancer cells, this controlled shuttling is lost and HMGA1 is found in mitochondria throughout the cell cycle. To investigate the effects of HMGA1 on mitochondria, we employed a genetically engineered line of human MCF-7 cells in which the levels of transgenic HMGA1 protein could be reversibly controlled. "Turn-ON" and "turn-OFF" time course experiments were performed with these cells to either increase or decrease intracellular HMGA1 levels, and various mitochondrial changes were monitored. Results demonstrated that changes in both mtDNA levels and mitochondrial mass inversely paralleled changes in HMGA1 concentrations, strongly implicating HMGA1 in the regulation of these parameters. Additionally, the level of cellular reactive oxygen species (ROS) increased and the efficiency of repair of oxidatively damaged mtDNA decreased as consequences of elevated HMGA1 expression. Increased ROS levels and reduced repair efficiency in HMGA1-overexpressing cells likely contribute to the increased occurrence of mutations in mtDNA frequently observed in cancer cells.


Subject(s)
DNA Repair/physiology , DNA, Mitochondrial/metabolism , HMGA1a Protein/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Humans
2.
Genome ; 51(9): 739-48, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18772952

ABSTRACT

Improved methods for genetically sexing salmonids and for characterization of Y-chromosome homologies between species can contribute to understanding the evolution of sex chromosomes and sex-determining mechanisms. In this study we have explored 12.5 kb of Y-chromosome-specific sequence flanking the previously described OtY2 locus in Chinook salmon (Oncorhynchus tshawytscha) and 21 kb of homologous rainbow trout (Oncorhynchus mykiss) Y-chromosome-specific sequence. This is the first confirmed Y-specific sequence for rainbow trout. New Y-specific markers are described for Chinook salmon (OtY3) and rainbow trout (OmyY1), which are readily detected by PCR assays and are advantageous because they also produce autosomal control amplification products. Additionally, AFLP analysis of Chinook salmon yielded another potential Y-chromosome marker. These descriptions will facilitate genotypic sexing and should be useful for population studies of Y-chromosome polymorphisms and for future studies to characterize what appears to be a common sex-determining mechanism between these species.


Subject(s)
Oncorhynchus mykiss/genetics , Polymorphism, Genetic , Salmon/genetics , Y Chromosome , Animals , Base Sequence , Cloning, Molecular , DNA/genetics , DNA Primers , Female , Male , Molecular Sequence Data , Polymerase Chain Reaction , Retroelements
3.
Cancer Res ; 67(13): 6044-52, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17616660

ABSTRACT

Cells that overexpress high-mobility group A1 (HMGA1) proteins exhibit deficient nucleotide excision repair (NER) after exposure to DNA-damaging agents, a condition ameliorated by artificially lowering intracellular levels of these nonhistone proteins. One possible mechanism for this NER inhibition is down-regulation of proteins involved in NER, such as xeroderma pigmentosum complimentation group A (XPA). Microarray and reverse transcription-PCR data indicate a 2.6-fold decrease in intracellular XPA mRNA in transgenic MCF-7 cells overexpressing HMGA1 proteins compared with non-HMGA1-expressing cells. XPA protein levels are also approximately 3-fold lower in HMGA1-expressing MCF-7 cells. Moreover, whereas a >2-fold induction of XPA proteins is observed in normal MCF-7 cells 30 min after UV exposure, no apparent induction of XPA protein is observed in MCF-7 cells expressing HMGA1. Mechanistically, we present both chromatin immunoprecipitation and promoter site-specific mutagenesis evidence linking HMGA1 to repression of XPA transcription via binding to a negative regulatory element in the endogenous XPA gene promoter. Phenotypically, HMGA1-expressing cells exhibit compromised removal of cyclobutane pyrimidine dimer lesions, a characteristic of cells that express low levels of XPA. Importantly, we show that restoring expression of wild-type XPA in HMGA1-expressing cells rescues UV resistance comparable with that of normal MCF-7 cells. Together, these data provide strong experimental evidence that HMGA1 proteins are involved in inhibiting XPA expression, resulting in increased UV sensitivity in cells that overexpress these proteins. Because HMGA1 proteins are overexpressed in most naturally occurring cancers, with increasing cellular concentrations correlating with increasing metastatic potential and poor patient prognosis, the current findings provide new insights into previously unsuspected mechanisms contributing to tumor progression.


Subject(s)
DNA Repair , HMGA1a Protein/physiology , Neoplasms/etiology , Neoplasms/prevention & control , Xeroderma Pigmentosum/genetics , Base Sequence , Cell Line, Tumor , Cyclobutanes/pharmacology , DNA Damage , Disease Progression , Dose-Response Relationship, Radiation , Humans , Molecular Sequence Data , Mutagenesis , Promoter Regions, Genetic , Pyrimidine Dimers/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...