Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-492198

ABSTRACT

Major histocompatibility complex class I (MHC-I) molecules, which are dimers of a glycosylated polymorphic transmembrane heavy chain and the small protein {beta}2-microglobulin ({beta}2m), bind peptides in the endoplasmic reticulum that are generated by the cytosolic turnover of cellular proteins. In virus-infected cells these peptides may include those derived from viral proteins. Peptide-MHC-I complexes then traffic through the secretory pathway and are displayed at the cell surface where those containing viral peptides can be detected by CD8+ T lymphocytes that kill infected cells. Many viruses enhance their in vivo survival by encoding genes that downregulate MHC-I expression to avoid CD8+ T cell recognition. Here we report that two accessory proteins encoded by SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, downregulate MHC-I expression using distinct mechanisms. One, ORF3a, a viroporin, reduces global trafficking of proteins, including MHC-I, through the secretory pathway. The second, ORF7a, interacts specifically with the MHC-I heavy chain, acting as a molecular mimic of {beta}2m to inhibit its association. This slows the exit of properly assembled MHC-I molecules from the endoplasmic reticulum. We demonstrate that ORF7a reduces antigen presentation by the human MHC-I allele HLA-A*02:01. Thus, both ORF3a and ORF7a act post-translationally in the secretory pathway to lower surface MHC-I expression, with ORF7a exhibiting a novel and specific mechanism that allows immune evasion by SARS-CoV-2. Significance StatementViruses may down-regulate MHC class I expression on infected cells to avoid elimination by cytotoxic T cells. We report that the accessory proteins ORF7a and ORF3a of SARS-CoV-2 mediate this function and delineate the two distinct mechanisms involved. While ORF3a inhibits global protein trafficking to the cell surface, ORF7a acts specifically on MHC-I by competing with {beta}2m for binding to the MHC-I heavy chain. This is the first account of molecular mimicry of {beta}2m as a viral mechanism of MHC-I down-regulation to facilitate immune evasion.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-478460

ABSTRACT

The SARS-CoV-2 main protease, Mpro, is critical for its replication and is an appealing target for designing anti-SARS-CoV-2 agents. In this regard, a number of assays have been developed based on its cleavage sequence preferences to monitor its activity. These include the usage of Fluorescence Resonance Energy Transfer (FRET)-based substrates in vitro and a FlipGFP reporter, one which fluoresces after Mpro-mediated cleavage, in live cells. Here, we have engineered a pair of genetically encoded, Bioluminescence Resonance Energy Transfer (BRET)-based sensors for detecting SARS-CoV-2 Mpro proteolytic activity in living host cells as well as in vitro assays. The sensors were generated by sandwiching Mpro N-terminal autocleavage sites, either AVLQSGFR (short) or KTSAVLQSGFRKME (long), in between the mNeonGreen and nanoLuc proteins. Co-expression of the sensor with the Mpro in live cells resulted in its cleavage in a dose- and time-dependent manner while mutation of the critical C145 residue (C145A) in Mpro completely abrogated the sensor cleavage. Importantly, the BRET-based sensors displayed increased sensitivities and specificities as compared to the recently developed FlipGFP-based Mpro sensor. Additionally, the sensors recapitulated the inhibition of Mpro by the well-characterized pharmacological agent GC376. Further, in vitro assays with the BRET-based Mpro sensors revealed a molecular crowding-mediated increase in the rate of Mpro activity and a decrease in the inhibitory potential of GC376. The sensor developed here will find direct utility in studies related to drug discovery targeting the SARS-CoV-2 Mpro and functional genomics application to determine the effect of sequence variation in Mpro.

SELECTION OF CITATIONS
SEARCH DETAIL
...