Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Indoor Air ; 24(6): 559-66, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24654944

ABSTRACT

UNLABELLED: Carbon dioxide (CO2 ) metabolically produced by humans has been widely used as a tracer gas for determining ventilation rates in occupied rooms. Among other necessities, the method requires good estimates of human CO2 generation rates. An empirically derived equation is widely used to calculate the CO2 generation rate. However, there are indications that this equation is not valid for young Chinese people. In this study, we measured the CO2 generation rate of 44 young Chinese people at two typical activity levels, quiet sitting and relaxed standing. We found that the commonly used empirical equation overpredicted CO2 generation rates, but could be corrected with a factor of 0.75 for Chinese females and of 0.85 for Chinese males. The variance for measured CO2 sitting was much smaller than for standing, and hence, we concluded that sitting yields more precise CO2 generation estimates. The relative contributions of sex, height, weight, and metabolic rate were analyzed. We concluded that the error in estimating metabolic rate is responsible for most of the difference in measured generation of CO2 from the empirical equation's predictions. PRACTICAL IMPLICATIONS: The tracer gas method using CO2 generated by people is widely used to calculate ventilation rate. However, the empirically derived equation that is normally used to estimate CO2 generation rate is not suitable for young Chinese people at rest. To estimate the CO2 generation rate in Chinese people under low-activity conditions, the empirical equation should be multiplied by correction factors of 0.75 and 0.85 for females and males, respectively.


Subject(s)
Carbon Dioxide/metabolism , Ventilation , Adult , Air Pollution, Indoor/analysis , Asian People , Basal Metabolism , China , Female , Humans , Male , Models, Biological , Respiration , Young Adult
2.
Proc Natl Acad Sci U S A ; 102(51): 18550-5, 2005 Dec 20.
Article in English | MEDLINE | ID: mdl-16344476

ABSTRACT

To evaluate the role of fluid and Na+ balance in the development of exercise-associated hyponatremia (EAH), changes in serum Na+ concentrations ([Na+]) and in body weight were analyzed in 2,135 athletes in endurance events. Eighty-nine percent of athletes completed these events either euhydrated (39%) or with weight loss (50%) and with normal (80%) or elevated (13%) serum [Na+]. Of 231 (11%) athletes who gained weight during exercise, 70% were normonatremic or hypernatremic, 19% had a serum [Na+] between 129-135 mmol/liter, and 11% a serum [Na+] of <129 mmol/liter. Serum [Na+] after racing was a linear function with a negative slope of the body weight change during exercise. The final serum [Na+] in a subset of 18 subjects was predicted from the amount of Na+ that remained osmotically inactive at the completion of the trial. Weight gain consequent to excessive fluid consumption was the principal cause of a reduced serum [Na+] after exercise, yet most (70%) subjects who gained weight maintained or increased serum [Na+], requiring the addition of significant amounts of Na+ (>500 mmol) into an expanded volume of total body water. This Na+ likely originated from osmotically inactive, exchangeable stores. Thus, EAH occurs in athletes who (i) drink to excess during exercise, (ii) retain excess fluid because of inadequate suppression of antidiuretic hormone secretion, and (iii) osmotically inactivate circulating Na+ or fail to mobilize osmotically inactive sodium from internal stores. EAH can be prevented by insuring that athletes do not drink to excess during exercise, which has been known since 1985.


Subject(s)
Exercise/physiology , Hyponatremia/etiology , Hyponatremia/physiopathology , Sports/physiology , Body Weight , Dehydration , Humans , Hyponatremia/blood , Hyponatremia/classification , Sodium/blood
SELECTION OF CITATIONS
SEARCH DETAIL