Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Bone Miner Res ; 39(3): 357-372, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38477738

ABSTRACT

Sphingosine-1-phosphate (S1P) plays multiple roles in bone metabolism and regeneration. Here, we have identified a novel S1P-regulated osteoanabolic mechanism functionally connecting osteoblasts (OBs) to the highly specialized bone vasculature. We demonstrate that S1P/S1PR3 signaling in OBs stimulates vascular endothelial growth factor a (VEGFa) expression and secretion to promote bone growth in an autocrine and boost osteogenic H-type differentiation of bone marrow endothelial cells in a paracrine manner. VEGFa-neutralizing antibodies and VEGF receptor inhibition by axitinib abrogated OB growth in vitro and bone formation in male C57BL/6J in vivo following S1P stimulation and S1P lyase inhibition, respectively. Pharmacological S1PR3 inhibition and genetic S1PR3 deficiency suppressed VEGFa production, OB growth in vitro, and inhibited H-type angiogenesis and bone growth in male mice in vivo. Together with previous work on the osteoanabolic functions of S1PR2 and S1PR3, our data suggest that S1P-dependent bone regeneration employs several nonredundant positive feedback loops between OBs and the bone vasculature. The identification of this yet unappreciated aspect of osteoanabolic S1P signaling may have implications for regular bone homeostasis as well as diseases where the bone microvasculature is affected such as age-related osteopenia and posttraumatic bone regeneration.


Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates bone growth and regeneration. In the present study, a novel regenerative mechanism was connected to S1P signaling within the bone. Activation of its receptor S1PR3 in bone-forming osteoblasts led to secretion of vascular endothelial growth factor a (VEGFa), the most potent vessel-stimulating factor. This stimulated the development of specialized vessels of the bone marrow, the H-type vessels, that supported overall bone regeneration. These findings foster our understanding of regular bone metabolism and suggest that S1P-based drugs may help treat diseases such as age-related osteopenia and posttraumatic bone regeneration, conditions crucially dependent on functional bone microvasculature.


Subject(s)
Lysophospholipids , Receptors, Lysosphingolipid , Sphingosine/analogs & derivatives , Vascular Endothelial Growth Factor A , Male , Mice , Animals , Receptors, Lysosphingolipid/metabolism , Sphingosine-1-Phosphate Receptors , Vascular Endothelial Growth Factor A/metabolism , Osteogenesis , Endothelial Cells/metabolism , Mice, Inbred C57BL , Osteoblasts/metabolism
2.
Nat Commun ; 14(1): 8329, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097610

ABSTRACT

Red blood cells (RBC) are the major carriers of sphingosine-1-phosphate (S1P) in blood. Here we show that variations in RBC S1P content achieved by altering S1P synthesis and transport by genetic and pharmacological means regulate glucose uptake and metabolic flux. This is due to S1P-mediated activation of the catalytic protein phosphatase 2 (PP2A) subunit leading to reduction of cell-surface glucose transporters (GLUTs). The mechanism dynamically responds to metabolic cues from the environment by increasing S1P synthesis, enhancing PP2A activity, reducing GLUT phosphorylation and localization, and diminishing glucose uptake in RBC from diabetic mice and humans. Functionally, it protects RBC against lipid peroxidation in hyperglycemia and diabetes by activating the pentose phosphate pathway. Proof of concept is provided by the resistance of mice lacking the S1P exporter MFSD2B to diabetes-induced HbA1c elevation and thiobarbituric acid reactive substances (TBARS) generation in diabetic RBC. This mechanism responds to pharmacological S1P analogues such as fingolimod and may be functional in other insulin-independent tissues making it a promising therapeutic target.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Humans , Mice , Animals , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Erythrocytes/metabolism , Hyperglycemia/metabolism , Sphingosine , Lysophospholipids/metabolism , Glucose/metabolism
3.
J Cell Mol Med ; 27(23): 3786-3795, 2023 12.
Article in English | MEDLINE | ID: mdl-37710406

ABSTRACT

Posttraumatic osteomyelitis and the ensuing bone defects are a debilitating complication after open fractures with little therapeutic options. We have recently identified potent osteoanabolic effects of sphingosine-1-phosphate (S1P) signalling and have now tested whether it may beneficially affect bone regeneration after infection. We employed pharmacological S1P lyase inhibition by 4-deoxypyrodoxin (DOP) to raise S1P levels in vivo in an unicortical long bone defect model of posttraumatic osteomyelitis in mice. In a translational approach, human bone specimens of clinical osteomyelitis patients were treated in organ culture in vitro with DOP. Bone regeneration was assessed by µCT, histomorphometry, immunohistology and gene expression analysis. The role of S1P receptors was addressed using S1PR3 deficient mice. Here, we present data that DOP treatment markedly enhanced osteogenesis in posttraumatic osteomyelitis. This was accompanied by greatly improved osteoblastogenesis and enhanced angiogenesis in the callus accompanied by osteoclast-mediated bone remodelling. We also identified the target of increased S1P to be the S1PR3 as S1PR3-/- mice showed no improvement of bone regeneration by DOP. In the human bone explants, bone mass significantly increased along with enhanced osteoblastogenesis and angiogenesis. Our data suggest that enhancement of S1P/S1PR3 signalling may be a promising therapeutic target for bone regeneration in posttraumatic osteomyelitis.


Subject(s)
Lyases , Osteoclasts , Humans , Animals , Mice , Osteoclasts/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Lysophospholipids/metabolism , Sphingosine/metabolism , Bone Regeneration , Lyases/metabolism , Receptors, Lysosphingolipid/genetics
4.
Nat Commun ; 14(1): 2404, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37100836

ABSTRACT

Antiplatelet medication is standard of care in acute myocardial infarction (AMI). However, it may have obscured beneficial properties of the activated platelet secretome. We identify platelets as major source of a sphingosine-1-phosphate (S1P) burst during AMI, and find its magnitude to favorably associate with cardiovascular mortality and infarct size in STEMI patients over 12 months. Experimentally, administration of supernatant from activated platelets reduces infarct size in murine AMI, which is blunted in platelets deficient for S1P export (Mfsd2b) or production (Sphk1) and in mice deficient for cardiomyocyte S1P receptor 1 (S1P1). Our study reveals an exploitable therapeutic window in antiplatelet therapy in AMI as the GPIIb/IIIa antagonist tirofiban preserves S1P release and cardioprotection, whereas the P2Y12 antagonist cangrelor does not. Here, we report that platelet-mediated intrinsic cardioprotection is an exciting therapeutic paradigm reaching beyond AMI, the benefits of which may need to be considered in all antiplatelet therapies.


Subject(s)
Blood Platelets , Myocardial Infarction , Humans , Mice , Animals , Myocardial Infarction/drug therapy , Sphingosine , Lysophospholipids/therapeutic use , Myocytes, Cardiac
5.
ESC Heart Fail ; 10(1): 334-341, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36217778

ABSTRACT

AIMS: Therapeutic options targeting post-ischaemic cardiac remodelling are sparse. The bioactive sphingolipid sphingosine-1-phosphate (S1P) reduces ischaemia/reperfusion injury. However, its impact on post-ischaemic remodelling independently of its infarct size (IS)-reducing effect is yet unknown and was addressed in this study. METHODS AND RESULTS: Acute myocardial infarction (AMI) in mice was induced by permanent ligation of the left anterior descending artery (LAD). C57Bl6 were treated with the S1P lyase inhibitor 4-deoxypyridoxine (DOP) starting 7 days prior to AMI to increase endogenous S1P concentrations. Cardiac function and myocardial healing were assessed by cardiovascular magnetic resonance imaging (cMRI), murine echocardiography, histomorphology, and gene expression analysis. DOP effects were investigated in cardiomyocyte-specific S1P receptor 1 deficient (S1PR1 Cardio Cre+) and Cre- control mice and S1P concentrations measured by LC-MS/MS. IS and cardiac function did not differ between control and DOP-treated groups on day one after LAD-ligation despite fourfold increase in plasma S1P. In contrast, cardiac function was clearly improved and myocardial scar size reduced, respectively, on Day 21 in DOP-treated mice. The latter also exhibited smaller cardiomyocyte size and reduced embryonic gene expression. The benefit of DOP treatment was abolished in S1PR1 Cardio Cre+. CONCLUSIONS: S1P improves cardiac function and myocardial healing post AMI independently of initial infarct size and accomplishes this via the cardiomyocyte S1PR1. Hence, in addition to its beneficial effects on I/R injury, S1PR1 may be a promising target in post-infarction myocardial remodelling as adjunctive therapy to revascularization as well as in patients not eligible for standard interventional procedures.


Subject(s)
Myocardial Infarction , Receptors, Lysosphingolipid , Mice , Animals , Sphingosine-1-Phosphate Receptors/therapeutic use , Chromatography, Liquid , Receptors, Lysosphingolipid/genetics , Receptors, Lysosphingolipid/metabolism , Receptors, Lysosphingolipid/therapeutic use , Tandem Mass Spectrometry , Myocardial Infarction/drug therapy
6.
Int J Mol Sci ; 23(17)2022 08 24.
Article in English | MEDLINE | ID: mdl-36077004

ABSTRACT

Altered plasma sphingosine-1-phosphate (S1P) concentrations are associated with clinical manifestations of atherosclerosis. However, whether long-term elevation of endogenous S1P is pro- or anti-atherogenic remains unclear. Here, we addressed the impact of permanently high S1P levels on atherosclerosis in cholesterol-fed apolipoprotein E-deficient (ApoE-/-) mice over 12 weeks. This was achieved by pharmacological inhibition of the S1P-degrading enzyme S1P lyase with 4-deoxypyridoxine (DOP). DOP treatment dramatically accelerated atherosclerosis development, propagated predominantly unstable plaque phenotypes, and resulted in frequent plaque rupture with atherothrombosis. Macrophages from S1P lyase-inhibited or genetically deficient mice had a defect in cholesterol efflux to apolipoprotein A-I that was accompanied by profoundly downregulated cholesterol transporters ATP-binding cassette transporters ABCA1 and ABCG1. This was dependent on S1P signaling through S1PR3 and resulted in dramatically enhanced atherosclerosis in ApoE-/-/S1PR3-/- mice, where DOP treatment had no additional effect. Thus, high endogenous S1P levels promote atherosclerosis, compromise cholesterol efflux, and cause genuine plaque rupture.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , ATP Binding Cassette Transporter 1/genetics , Animals , Apolipoproteins E/genetics , Atherosclerosis/etiology , Cholesterol , Lysophospholipids , Mice , Mice, Knockout , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/genetics , Sphingosine/analogs & derivatives
7.
Pharmacol Ther ; 228: 107920, 2021 12.
Article in English | MEDLINE | ID: mdl-34171330

ABSTRACT

Diabetes mellitus (DM) is associated with a specific cardiac phenotype characterized by structural and functional alterations. This so-called diabetic cardiomyopathy (DM CM) is clinically relevant as patients with DM show high incidence of heart failure. Mechanistically, several parameters interact on the cardiomyocyte level leading to increased inflammation, apoptosis, reactive oxygen species and altered calcium signaling. This in turn provokes functional myocardial changes that might inter alia play into the worsened clinical outcome in DM patients. Therefore, efficient therapeutic options are urgently needed. This review focuses on mechanistic effects of currently recommended antidiabetic treatment and heart failure therapy for DM CM.


Subject(s)
Diabetic Cardiomyopathies , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Humans
8.
Bone ; 125: 1-7, 2019 08.
Article in English | MEDLINE | ID: mdl-31028959

ABSTRACT

BACKGROUND AND PURPOSE: Osteoporosis is a worldwide epidemic but pharmacological agents to stimulate new bone formation are scarce. We have shown that increasing tissue levels of sphingosine-1-phosphate (S1P) by blocking its degradation by the S1P lyase has pronounced osteoanabolic effect in mouse osteoporosis models by stimulating osteoblast differentiation through the S1P receptor 2 (S1P2). However, S1P lyase inhibitors have side effects complicating potential clinical use. Here, we tested whether direct S1P2 engagement by the S1P2 agonist CYM5520 exerted osteoanabolic potential in estrogen deficiency-induced osteopenia in mice. We compared its efficacy to LX2931, a novel S1P lyase inhibitor currently tested in rheumatoid arthritis. EXPERIMENTAL APPROACH: CYM5520, LX2931 or vehicle were administered to ovariectomized mice for 6 weeks beginning 5 weeks after ovariectomy, Bone mass, cellular composition and mechanical strength were assessed by microCT, histomorphometry and three point bending tests. Plasma markers of bone metabolism were analyzed by ELISA. KEY RESULTS: Therapeutic treatment with CYM5520 and LX2931 clearly increased long bone and vertebral bone mass to impressive 3-5 fold over vehicle in osteopenic ovariectomized mice. As expected, lymphopenia was a side effect of LX2931, whereas none occurred with CYM5520. Consistent with an osteoanabolic effect, CYM5520 increased osteoblast number, osteoid surface and alkaline phosphatase area 2-3 fold over vehicle. Plasma concentrations of the osteoanabolic marker procollagen I C-terminal propeptide were also elevated by CYM5520 and LX2931. LX2931 but not yet CYM5520 increased cortical thickness and mechanical strength without affecting mineral density. CONCLUSION AND IMPLICATIONS: Treatment with a pharmacological S1P2 agonist corrected ovariectomy-induced osteopenia in mice by inducing new bone formation thus constituting a novel osteoanabolic approach to osteoporosis.


Subject(s)
Anabolic Agents/therapeutic use , Osteoporosis/drug therapy , Osteoporosis/metabolism , Pyrroles/therapeutic use , Sphingosine-1-Phosphate Receptors/agonists , Sphingosine-1-Phosphate Receptors/metabolism , Anabolic Agents/pharmacology , Animals , Female , Mice , Mice, Inbred C57BL , Osteoporosis/pathology , Ovariectomy/adverse effects , Pyrroles/pharmacology
9.
J Lipid Res ; 60(3): 506-515, 2019 03.
Article in English | MEDLINE | ID: mdl-30655318

ABSTRACT

Sphingolipid and cholesterol metabolism are closely associated at the structural, biochemical, and functional levels. Although HDL-associated sphingosine-1-phosphate (S1P) contributes to several HDL functions, and S1P signaling regulates glucose and lipid metabolism, no study has addressed the involvement of S1P in cholesterol efflux. Here, we show that sphingosine kinase (Sphk) activity was induced by the LXR agonist 22(R)-hydroxycholesterol and required for the stimulation of ABCA1-mediated cholesterol efflux to apolipoprotein A-I. In support, pharmacological Sphk inhibition and Sphk2 but not Sphk1 deficiency abrogated efflux. The involved mechanism included stimulation of both transcriptional and functional ABCA1 regulatory pathways and depended for the latter on the S1P receptor 3 (S1P3). Accordingly, S1P3-deficient macrophages were resistant to 22(R)-hydroxycholesterol-stimulated cholesterol efflux. The inability of excess exogenous S1P to further increase efflux was consistent with tonic S1P3 signaling by a pool of constitutively generated Sphk-derived S1P dynamically regulating cholesterol efflux. In summary, we have established S1P as a previously unrecognized intermediate in LXR-stimulated ABCA1-mediated cholesterol efflux and identified S1P/S1P3 signaling as a positive-feedback regulator of cholesterol efflux. This constitutes a novel regulatory mechanism of cholesterol efflux by sphingolipids.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Cholesterol/metabolism , Lysophospholipids/metabolism , Macrophages/cytology , Macrophages/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Animals , Apolipoprotein A-I/metabolism , Biological Transport , Homeostasis , Mice , Phosphotransferases (Alcohol Group Acceptor)/biosynthesis , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/metabolism
10.
Nat Med ; 24(5): 667-678, 2018 05.
Article in English | MEDLINE | ID: mdl-29662200

ABSTRACT

Sphingosine-1-phosphate (S1P) signaling influences bone metabolism, but its therapeutic potential in bone disorders has remained unexplored. We show that raising S1P levels in adult mice through conditionally deleting or pharmacologically inhibiting S1P lyase, the sole enzyme responsible for irreversibly degrading S1P, markedly increased bone formation, mass and strength and substantially decreased white adipose tissue. S1P signaling through S1P2 potently stimulated osteoblastogenesis at the expense of adipogenesis by inversely regulating osterix and PPAR-γ, and it simultaneously inhibited osteoclastogenesis by inducing osteoprotegerin through newly discovered p38-GSK3ß-ß-catenin and WNT5A-LRP5 pathways. Accordingly, S1P2-deficient mice were osteopenic and obese. In ovariectomy-induced osteopenia, S1P lyase inhibition was as effective as intermittent parathyroid hormone (iPTH) treatment in increasing bone mass and was superior to iPTH in enhancing bone strength. Furthermore, lyase inhibition in mice successfully corrected severe genetic osteoporosis caused by osteoprotegerin deficiency. Human data from 4,091 participants of the SHIP-Trend population-based study revealed a positive association between serum levels of S1P and bone formation markers, but not resorption markers. Furthermore, serum S1P levels were positively associated with serum calcium , negatively with PTH , and curvilinearly with body mass index. Bone stiffness, as determined through quantitative ultrasound, was inversely related to levels of both S1P and the bone formation marker PINP, suggesting that S1P stimulates osteoanabolic activity to counteract decreasing bone quality. S1P-based drugs should be considered as a promising therapeutic avenue for the treatment of osteoporotic diseases.


Subject(s)
Aldehyde-Lyases/antagonists & inhibitors , Anabolic Agents/therapeutic use , Bone Resorption/drug therapy , Bone Resorption/enzymology , Molecular Targeted Therapy , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Aldehyde-Lyases/metabolism , Anabolic Agents/pharmacology , Animals , Bone Resorption/blood , Bone Resorption/diagnostic imaging , Cell Differentiation/drug effects , Cell Line , Femur/diagnostic imaging , Femur/pathology , Gene Deletion , Lysophospholipids/blood , Mice, Knockout , Obesity/blood , Obesity/pathology , Organ Size , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/pathology , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/pathology , Osteoporosis/metabolism , Osteoporosis/pathology , Osteoprotegerin/blood , Osteoprotegerin/metabolism , PPAR gamma/metabolism , Signal Transduction , Sp7 Transcription Factor/metabolism , Sphingosine/analogs & derivatives , Sphingosine/blood , X-Ray Microtomography
11.
Blood ; 130(25): 2786-2798, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29109103

ABSTRACT

The hepatocyte nuclear factor (HNF) family regulates complex networks of metabolism and organ development. Human mutations in its prototypical member HNF1A cause maturity-onset diabetes of the young (MODY) type 3. In this study, we identified an important role for HNF1A in the preservation of erythrocyte membrane integrity, calcium homeostasis, and osmotic resistance through an as-yet unrecognized link of HNF1A to sphingolipid homeostasis. HNF1A-/- mice displayed microcytic hypochromic anemia with reticulocytosis that was partially compensated by avid extramedullary erythropoiesis at all erythroid stages in the spleen thereby excluding erythroid differentiation defects. Morphologically, HNF1A-/- erythrocytes resembled acanthocytes and displayed increased phosphatidylserine exposure, high intracellular calcium, and elevated osmotic fragility. Sphingolipidome analysis by mass spectrometry revealed substantial and tissue-specific sphingolipid disturbances in several tissues including erythrocytes with the accumulation of sphingosine as the most prominent common feature. All HNF1A-/- erythrocyte defects could be simulated by exposure of wild-type (WT) erythrocytes to sphingosine in vitro and attributed in part to sphingosine-induced suppression of the plasma-membrane Ca2+-ATPase activity. Bone marrow transplantation rescued the anemia phenotype in vivo, whereas incubation with HNF1A-/- plasma increased the osmotic fragility of WT erythrocytes in vitro. Our data suggest a non-cell-autonomous erythrocyte defect secondary to the sphingolipid changes caused by HNF1A deficiency. Transcriptional analysis revealed 4 important genes involved in sphingolipid metabolism to be deregulated in HNF1A deficiency: Ormdl1, sphingosine kinase-2, neutral ceramidase, and ceramide synthase-5. The considerable erythrocyte defects in murine HNF1A deficiency encourage clinical studies to explore the hematological consequences of HNF1A deficiency in human MODY3 patients.


Subject(s)
Anemia, Hemolytic/etiology , Hepatocyte Nuclear Factor 1-alpha/deficiency , Homeostasis , Sphingolipids/metabolism , Animals , Erythrocytes/chemistry , Gene Expression Regulation , Membrane Proteins , Mice , Neutral Ceramidase/genetics , Orosomucoid/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Sphingolipids/analysis , Sphingosine N-Acyltransferase/genetics
12.
J Immunol ; 196(4): 1655-65, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26800876

ABSTRACT

The hepatocyte NF (HNF) family of transcription factors regulates the complex gene networks involved in lipid, carbohydrate, and protein metabolism. In humans, HNF1A mutations cause maturity onset of diabetes in the young type 3, whereas murine HNF6 participates in fetal liver B lymphopoiesis. In this study, we have identified a crucial role for the prototypical member of the family HNF1A in adult bone marrow B lymphopoiesis. HNF1A(-/-) mice exhibited a clear reduction in total blood and splenic B cells and a further pronounced one in transitional B cells. In HNF1A(-/-) bone marrow, all B cell progenitors-from pre-pro-/early pro-B cells to immature B cells-were dramatically reduced and their proliferation rate suppressed. IL-7 administration in vivo failed to boost B cell development in HNF1A(-/-) mice, whereas IL-7 stimulation of HNF1A(-/-) B cell progenitors in vitro revealed a marked impairment in STAT5 phosphorylation. The B cell differentiation potential of HNF1A(-/-) common lymphoid progenitors was severely impaired in vitro, and the expression of the B lymphopoiesis-promoting transcription factors E2A, EBF1, Pax5, and Bach2 was reduced in B cell progenitors in vivo. HNF1A(-/-) bone marrow chimera featured a dramatic defect in B lymphopoiesis recapitulating that of global HNF1A deficiency. The HNF1A(-/-) lymphopoiesis defect was confined to B cells as T lymphopoiesis was unaffected, and bone marrow common lymphoid progenitors and hematopoietic stem cells were even increased. Our data demonstrate that HNF1A is an important cell-intrinsic transcription factor in adult B lymphopoiesis and suggest the IL-7R/STAT5 module to be causally involved in mediating its function.


Subject(s)
B-Lymphocytes/immunology , Cell Differentiation/immunology , Hepatocyte Nuclear Factor 1-alpha/immunology , Lymphopoiesis/immunology , Animals , B-Lymphocytes/cytology , Cell Separation , Flow Cytometry , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction , Transcription Factors
13.
J Am Coll Cardiol ; 66(13): 1470-85, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26403344

ABSTRACT

BACKGROUND: Sphingosine-1-phosphate (S1P) is a constituent of high-density lipoproteins (HDL) that contributes to their beneficial effects. We have shown decreased HDL-S1P in coronary artery disease (CAD) but its functional relevance remains unclear. OBJECTIVES: This study investigated the functional consequences of reduced HDL-S1P content in CAD and tested if increasing it may improve or restore HDL function. METHODS: Human HDL from healthy and CAD subjects, as well as mouse HDL, were isolated by ultracentrifugation. HDL-S1P-dependent activation of cell-signaling pathways and induction of vasodilation were examined in vitro and in isolated arteries using native and S1P-loaded HDL, S1P receptor antagonists, and S1P-blocking antibodies. RESULTS: HDL-S1P-dependent signaling was clearly impaired and S1P content reduced in CAD-HDL as compared to healthy HDL. Both healthy and CAD-HDL could be efficiently and equally well loaded with S1P from cellular donors and plasma. S1P-loading greatly improved HDL signaling and vasodilatory potential in pre-contracted arteries and completely corrected the defects inherent to CAD-HDL. HDL-S1P content and uptake was reduced by oxidation and was lower in HDL3 than HDL2. Loading with S1P in vitro and in vivo fully replenished the virtually absent S1P content of apolipoprotein M-deficient HDL and restored their defective signaling. Infusion of erythrocyte-associated C17-S1P in mice led to its rapid and complete uptake by HDL providing a means to directly S1P-load HDL in vivo. CONCLUSIONS: Reduced HDL-S1P content contributes to HDL dysfunction in CAD. It can be efficiently increased by S1P-loading in vitro and in vivo, providing a novel approach to correcting HDL dysfunction in CAD.


Subject(s)
Coronary Artery Disease/blood , Coronary Artery Disease/diagnosis , Lipoproteins, HDL/blood , Lysophospholipids/administration & dosage , Lysophospholipids/blood , Sphingosine/analogs & derivatives , Animals , Biomarkers/blood , CHO Cells , Cricetinae , Cricetulus , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice , Sphingosine/administration & dosage , Sphingosine/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...