Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6684): 757-763, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38359117

ABSTRACT

Electric fields play a key role in enzymatic catalysis and can enhance reaction rates by 100,000-fold, but the same rate enhancements have yet to be achieved in thermochemical heterogeneous catalysis. In this work, we probe the influence of catalyst potential and interfacial electric fields on heterogeneous Brønsted acid catalysis. We observed that variations in applied potential of ~380 mV led to a 100,000-fold rate enhancement for 1-methylcyclopentanol dehydration, which was catalyzed by carbon-supported phosphotungstic acid. Mechanistic studies support a model in which the interfacial electrostatic potential drop drives quasi-equilibrated proton transfer to the adsorbed substrate prior to rate-limiting C-O bond cleavage. Large increases in rate with potential were also observed for the same reaction catalyzed by Ti/TiOyHx and for the Friedel Crafts acylation of anisole with acetic anhydride by carbon-supported phosphotungstic acid.

2.
Chem Sci ; 14(26): 7154-7160, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37416702

ABSTRACT

Electrochemical polarization, which often plays a critical role in driving chemical reactions at solid-liquid interfaces, can arise spontaneously through the exchange of ions and/or electrons across the interface. However, the extent to which such spontaneous polarization prevails at nonconductive interfaces remains unclear because such materials preclude measuring and controlling the degree of interfacial polarization via standard (i.e., wired) potentiometric methods. Herein, we circumvent the limitations of wired potentiometry by applying infrared and ambient pressure X-ray photoelectron spectroscopies (AP-XPS) to probe the electrochemical potential of nonconductive interfaces as a function of solution composition. As a model class of macroscopically nonconductive interfaces, we specifically probe the degree of spontaneous polarization of ZrO2-supported Pt and Au nanoparticles immersed in aqueous solutions of varying pH. Shifts in the Pt-adsorbed CO vibrational band position evince electrochemical polarization of the Pt/ZrO2-water interface with changing pH, and AP-XPS reveals quasi-Nernstian shifts of the electrochemical potential of Pt and Au with pH in the presence of H2. These results indicate that spontaneous proton transfer via equilibrated H+/H2 interconversion spontaneously polarizes metal nanoparticles even when supported on a nonconductive host. Consequently, these findings indicate that solution composition (i.e., pH) can be an effective handle for tuning interfacial electrical polarization and potential at nonconductive interfaces.

3.
ACS Cent Sci ; 7(6): 1045-1055, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34235265

ABSTRACT

Large oriented electric fields spontaneously arise at all solid-liquid interfaces via the exchange of ions and/or electrons with the solution. Although intrinsic electric fields are known to play an important role in molecular and biological catalysis, the role of spontaneous polarization in heterogeneous thermocatalysis remains unclear because the catalysts employed are typically disconnected from an external circuit, which makes it difficult to monitor or control the degree of electrical polarization of the surface. Here, we address this knowledge gap by developing general methods for wirelessly monitoring and controlling spontaneous electrical polarization at conductive catalysts dispersed in liquid media. By combining electrochemical and spectroscopic measurements, we demonstrate that proton and electron transfer from solution controllably, spontaneously, and wirelessly polarize Pt surfaces during thermochemical catalysis. We employ liquid-phase ethylene hydrogenation on a Pt/C catalyst as a thermochemical probe reaction and observe that the rate of this nonpolar hydrogenation reaction is significantly influenced by spontaneous electric fields generated by both interfacial proton transfer in water and interfacial electron transfer from organometallic redox buffers in a polar aprotic ortho-difluorobenzene solvent. Across these vastly disparate reaction media, we observe quantitatively similar scaling of ethylene hydrogenation rates with the Pt open-circuit electrochemical potential (E OCP). These results isolate the role of interfacial electrostatic effects from medium-specific chemical interactions and establish that spontaneous interfacial electric fields play a critical role in liquid-phase heterogeneous catalysis. Consequently, E OCP-a generally overlooked parameter in heterogeneous catalysis-warrants consideration in mechanistic studies of thermochemical reactions at solid-liquid interfaces, alongside chemical factors such as temperature, reactant activities, and catalyst structure. Indeed, this work establishes the experimental and conceptual foundation for harnessing electric fields to both elucidate surface chemistry and manipulate preparative thermochemical catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...