Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190516, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32892726

ABSTRACT

The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m-2 yr-1 during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m-2 yr-1 with a median value of -59 g C m-2 yr-1. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Subject(s)
Carbon/analysis , Climate Change , Droughts , Soil/chemistry , Water/analysis , Carbon Cycle , Forests , Meteorological Concepts , Scandinavian and Nordic Countries , Seasons
3.
FEMS Microbiol Ecol ; 49(3): 371-8, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-19712287

ABSTRACT

Recent investigations have highlighted the relative importance of the winter season for emissions of N(2)O from boreal soils. However, our understanding of the processes and environmental controls regulating these emissions is fragmentary. Therefore, we investigated the potential for, and relative importance of, N(2)O formation at temperatures below 0 degrees C in laboratory experiments involving incubations of a Swedish boreal forest soil. Our results show that frozen soils have a high potential for N(2)O formation and subsequent emission. Net N(2)O production rates at -4 degrees C equaled those observed at +10 to +15 degrees C at moisture contents >60% of the soil's water-holding capacity. The source of this N(2)O was found to be denitrification occurring in anoxic microsites in the frozen soil and temperature per se did not control the denitrification rates at temperatures around 0 degrees C. Furthermore, both net nitrogen-mineralisation and nitrification were observed in the frozen soil samples. Based on these findings we propose a conceptual model for the temperature response of N(2)O formation in soils at low temperatures.


Subject(s)
Cold Temperature , Nitrogen/metabolism , Nitrous Oxide/metabolism , Soil/analysis , Trees , Environmental Monitoring , Oxygen Consumption , Seasons , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...