Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 147(1): 446, 2020 01.
Article in English | MEDLINE | ID: mdl-32006956

ABSTRACT

For single-sided deafness cochlear-implant (SSD-CI) listeners, different peripheral representations for electric versus acoustic stimulation, combined with interaural frequency mismatch, might limit the ability to perceive bilaterally presented speech as a single voice. The assessment of binaural fusion often relies on subjective report, which requires listeners to have some understanding of the perceptual phenomenon of object formation. Two experiments explored whether binaural fusion could instead be assessed using judgments of the number of voices in a mixture. In an SSD-CI simulation, normal-hearing listeners were presented with one or two "diotic" voices (i.e., unprocessed in one ear and noise-vocoded in the other) in a mixture with additional monaural voices. In experiment 1, listeners reported how many voices they heard. Listeners generally counted the diotic speech as two separate voices, regardless of interaural frequency mismatch. In experiment 2, listeners identified which of two mixtures contained diotic speech. Listeners performed significantly better with interaurally frequency-matched than with frequency-mismatched stimuli. These contrasting results suggest that listeners experienced partial fusion: not enough to count the diotic speech as one voice, but enough to detect its presence. The diotic-speech detection task (experiment 2) might provide a tool to evaluate fusion and optimize frequency mapping for SSD-CI patients.


Subject(s)
Discrimination, Psychological , Speech Perception , Acoustic Stimulation , Adolescent , Adult , Cochlear Implants , Humans , Psychoacoustics , Signal Processing, Computer-Assisted , Speech Discrimination Tests , Young Adult
2.
J Speech Lang Hear Res ; 62(3): 745-757, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30950730

ABSTRACT

Purpose For listeners with single-sided deafness, a cochlear implant (CI) can improve speech understanding by giving the listener access to the ear with the better target-to-masker ratio (TMR; head shadow) or by providing interaural difference cues to facilitate the perceptual separation of concurrent talkers (squelch). CI simulations presented to listeners with normal hearing examined how these benefits could be affected by interaural differences in loudness growth in a speech-on-speech masking task. Method Experiment 1 examined a target-masker spatial configuration where the vocoded ear had a poorer TMR than the nonvocoded ear. Experiment 2 examined the reverse configuration. Generic head-related transfer functions simulated free-field listening. Compression or expansion was applied independently to each vocoder channel (power-law exponents: 0.25, 0.5, 1, 1.5, or 2). Results Compression reduced the benefit provided by the vocoder ear in both experiments. There was some evidence that expansion increased squelch in Experiment 1 but reduced the benefit in Experiment 2 where the vocoder ear provided a combination of head-shadow and squelch benefits. Conclusions The effects of compression and expansion are interpreted in terms of envelope distortion and changes in the vocoded-ear TMR (for head shadow) or changes in perceived target-masker spatial separation (for squelch). The compression parameter is a candidate for clinical optimization to improve single-sided deafness CI outcomes.


Subject(s)
Hearing Aids , Speech Perception , Adolescent , Adult , Cochlear Implants , Hearing Loss, Unilateral/physiopathology , Hearing Loss, Unilateral/therapy , Humans , Young Adult
3.
Proc Natl Acad Sci U S A ; 114(47): 12602-12607, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29114043

ABSTRACT

In utero experience, such as maternal speech in humans, can shape later perception, although the underlying cortical substrate is unknown. In adult mammals, ascending thalamocortical projections target layer 4, and the onset of sensory responses in the cortex is thought to be dependent on the onset of thalamocortical transmission to layer 4 as well as the ear and eye opening. In developing animals, thalamic fibers do not target layer 4 but instead target subplate neurons deep in the developing white matter. We investigated if subplate neurons respond to sensory stimuli. Using electrophysiological recordings in young ferrets, we show that auditory cortex neurons respond to sound at very young ages, even before the opening of the ears. Single unit recordings showed that auditory responses emerged first in cortical subplate neurons. Subsequently, responses appeared in the future thalamocortical input layer 4, and sound-evoked spike latencies were longer in layer 4 than in subplate, consistent with the known relay of thalamic information to layer 4 by subplate neurons. Electrode array recordings show that early auditory responses demonstrate a nascent topographic organization, suggesting that topographic maps emerge before the onset of spiking responses in layer 4. Together our results show that sound-evoked activity and topographic organization of the cortex emerge earlier and in a different layer than previously thought. Thus, early sound experience can activate and potentially sculpt subplate circuits before permanent thalamocortical circuits to layer 4 are present, and disruption of this early sensory activity could be utilized for early diagnosis of developmental disorders.


Subject(s)
Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Ferrets/physiology , Neurons/physiology , Pattern Recognition, Physiological/physiology , Thalamus/physiology , Animals , Animals, Newborn , Auditory Cortex/anatomy & histology , Electrodes, Implanted , Female , Male , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Neurons/cytology , Stereotaxic Techniques , Synapses/physiology , Thalamus/anatomy & histology , Time Factors , White Matter/anatomy & histology , White Matter/physiology
4.
Ear Hear ; 38(3): 374-386, 2017.
Article in English | MEDLINE | ID: mdl-28002083

ABSTRACT

OBJECTIVES: Cochlear-implant (CI) users with single-sided deafness (SSD)-that is, one normal-hearing (NH) ear and one CI ear-can obtain some unmasking benefits when a mixture of target and masking voices is presented to the NH ear and a copy of just the masking voices is presented to the CI ear. NH listeners show similar benefits in a simulation of SSD-CI listening, whereby a mixture of target and masking voices is presented to one ear and a vocoded copy of the masking voices is presented to the opposite ear. However, the magnitude of the benefit for SSD-CI listeners is highly variable across individuals and is on average less than for NH listeners presented with vocoded stimuli. One possible explanation for the limited benefit observed for some SSD-CI users is that temporal and spectral discrepancies between the acoustic and electric ears might interfere with contralateral unmasking. The present study presented vocoder simulations to NH participants to examine the effects of interaural temporal and spectral mismatches on contralateral unmasking. DESIGN: Speech-reception performance was measured in a competing-talker paradigm for NH listeners presented with vocoder simulations of SSD-CI listening. In the monaural condition, listeners identified target speech masked by two same-gender interferers, presented to the left ear. In the bilateral condition, the same stimuli were presented to the left ear, but the right ear was presented with a noise-vocoded copy of the interfering voices. This paradigm tested whether listeners could integrate the interfering voices across the ears to better hear the monaural target. Three common distortions inherent in CI processing were introduced to the vocoder processing: spectral shifts, temporal delays, and reduced frequency selectivity. RESULTS: In experiment 1, contralateral unmasking (i.e., the benefit from adding the vocoded maskers to the second ear) was impaired by spectral mismatches of four equivalent rectangular bandwidths or greater. This is equivalent to roughly a 3.6-mm mismatch between the cochlear places stimulated in the electric and acoustic ears, which is on the low end of the average expected mismatch for SSD-CI listeners. In experiment 2, performance was negatively affected by a temporal mismatch of 24 ms or greater, but not for mismatches in the 0 to 12 ms range expected for SSD-CI listeners. Experiment 3 showed an interaction between spectral shift and spectral resolution, with less effect of interaural spectral mismatches when the number of vocoder channels was reduced. Experiment 4 applied interaural spectral and temporal mismatches in combination. Performance was best when both frequency and timing were aligned, but in cases where a mismatch was present in one dimension (either frequency or latency), the addition of mismatch in the second dimension did not further disrupt performance. CONCLUSIONS: These results emphasize the need for interaural alignment-in timing and especially in frequency-to maximize contralateral unmasking for NH listeners presented with vocoder simulations of SSD-CI listening. Improved processing strategies that reduce mismatch between the electric and acoustic ears of SSD-CI listeners might improve their ability to obtain binaural benefits in multitalker environments.


Subject(s)
Cochlear Implants , Hearing Loss/rehabilitation , Speech Perception , Adult , Cochlea/physiology , Communication Aids for Disabled , Humans , Pilot Projects , Sound , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...