Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 18(12)2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30551566

ABSTRACT

Despite the importance of computing soil pore water electrical conductivity (σp) from soil bulk electrical conductivity (σb) in ecological and hydrological applications, a good method of doing so remains elusive. The Hilhorst concept offers a theoretical model describing a linear relationship between σb, and relative dielectric permittivity (εb) in moist soil. The reciprocal of pore water electrical conductivity (1/σp) appears as a slope of the Hilhorst model and the ordinary least squares (OLS) of this linear relationship yields a single estimate ( 1 / σ p ^ ) of the regression parameter vector (σp) for the entire data. This study was carried out on a sandy soil under laboratory conditions. We used a time-varying dynamic linear model (DLM) and the Kalman filter (Kf) to estimate the evolution of σp over time. A time series of the relative dielectric permittivity (εb) and σb of the soil were measured using time domain reflectometry (TDR) at different depths in a soil column to transform the deterministic Hilhorst model into a stochastic model and evaluate the linear relationship between εb and σb in order to capture deterministic changes to (1/σp). Applying the Hilhorst model, strong positive autocorrelations between the residuals could be found. By using and modifying them to DLM, the observed and modeled data of εb obtain a much better match and the estimated evolution of σp converged to its true value. Moreover, the offset of this linear relation varies for each soil depth.

2.
Environ Sci Pollut Res Int ; 23(23): 23619-23629, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27614650

ABSTRACT

Newly constructed embankments should provide both a specific bearing capacity to enable trafficability in emergency cases and a sufficient pollutant retention capacity to protect the groundwater. A number of lysimeters were installed along the A115 highway to determine total and dissolved metal concentrations in road runoff and in the soil solution of newly constructed embankments. Dissolved concentrations in soil solution of the embankments did not exceed the trigger values of the German legislation. Depending on the metal, total concentrations in soil solution were more than twice as high as dissolved concentrations. The high infiltration rates lead to increased groundwater recharge beneath the embankments (up to 4100 mm a-1). Although metal concentrations were not problematic from the legislators' point of view, the elevated infiltration rates beside the road facilitated the transfer of high metal loads into deeper soil layers and potentially into the groundwater as well.


Subject(s)
Metals/analysis , Soil Pollutants/analysis , Transportation , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Soil/chemistry
3.
Chemosphere ; 142: 153-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26138709

ABSTRACT

Reclaimed tidal land soil (RTLS) often contains high levels of soluble salts and exchangeable Na that can adversely affect plant growth. The current study examined the effect of biochar on the physicochemical properties of RTLS and subsequently the influence on plant growth performance. Rice hull derived biochar (BC) was applied to RTLS at three different rates (1%, 2%, and 5% (w/w)) and maize (Zea mays L.) subsequently cultivated for 6weeks. While maize was cultivated, 0.1% NaCl solution was supplied from the bottom of the pots to simulate the natural RTLS conditions. Biochar induced changes in soil properties were evaluated by the water stable aggregate (WSA) percentage, exchangeable sodium percentage (ESP), soil organic carbon contents, cation exchange capacity, and exchangeable cations. Plant response was measured by growth rate, nutrient contents, and antioxidant enzyme activity of ascorbate peroxidase (APX) and glutathione reductase (GR). Application of rice hull derived biochar increased the soil organic carbon content and the percentage of WSA by 36-69%, while decreasing the ESP. The highest dry weight maize yield was observed from soil which received 5% BC (w/w), which was attributed to increased stability of water-stable aggregates and elevated levels of phosphate in BC incorporated soils. Moreover, increased potassium, sourced from the BC, induced mitigation of Na uptake by maize and consequently, reduced the impact of salt stress as evidenced by overall declines in the antioxidant activities of APX and GR.


Subject(s)
Charcoal/pharmacology , Soil/chemistry , Zea mays/drug effects , Zea mays/growth & development , Charcoal/chemistry , Chemical Phenomena , Oryza/chemistry , Sodium/metabolism , Water/chemistry , Zea mays/metabolism
4.
Sci Total Environ ; 493: 495-504, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24968352

ABSTRACT

Increasing worldwide motor vehicle traffic leads to the question of the possible environmental consequences. This paper aims to analyse metal leaching in a highway embankment using both field and laboratory experiments. Soil, soil solution and road runoff were collected along one of the oldest highways in the world to characterize leaching of the metals Cd, Cr, Cu, Ni, Pb and Zn. Batch, column and adsorption experiments were carried out to study the reliability and transferability of laboratory approaches. Depending on the element, the ratio of particle-bound metals in road runoff varied between 15-90%. Metal levels in embankment soils were significantly higher compared to a reference site in a forest at 800 m distance (up a factor of 30). High metal concentrations in soil solution at 50 cm soil depth were not a direct result of road runoff but rather of elevated concentrations in the soil matrix. The use of batch S4 elution was found to be the best overall laboratory method to predict soil solution concentrations in field. Adsorption experiments showed a relative increase in retention capacity in roadside soil of up to a factor of 20 after nearly 100 years of operation. The input of alkaline dust and organic carbon into roadside soils increases its retention capacity in the long term.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Soil Pollutants/analysis , Adsorption , Laboratories , Transportation
5.
Environ Pollut ; 189: 98-110, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24657603

ABSTRACT

This review provides a summary of studies analysing metal concentrations in soils and soil solution at European roadsides. The data collected during 27 studies covering a total of 64 sites across a number of European countries were summarised. Highest median values of Cr, Cu, Ni, Pb, and Zn were determined in the top soil layer at the first 5 m beside the road. Generally, the influence of traffic on soil contamination decreased with increasing soil depth and distance to the road. The concentration patterns of metals in soil solution were independent from concentrations in the soil matrix. At 10-m distance, elevated soil metal concentrations, low pH, and low percolation rates led to high solute concentrations. Directly beside the road, high percolation rates lead to high annual loadings although solute concentrations are comparatively low. These loadings might be problematic, especially in regions with acidic sandy soils and a high groundwater table.


Subject(s)
Environmental Monitoring , Environmental Pollution/statistics & numerical data , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Europe , Transportation/statistics & numerical data
6.
Environ Monit Assess ; 184(11): 6469-81, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22120776

ABSTRACT

Highways and main roads are a potential source of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Nonetheless, investigations of pollutants in roadside soils are still a subject of major interest due to the rapid development of traffic systems and increasing traffic all over the world. The accumulation of the heavy metals Pb, Cd, Cu and Zn in soils along the oldest federal highway of the world has been studied by sampling a roadside transect of 125 by 10 m. In addition, heavy metal concentrations of Pb, Cd, Zn, Cu, Ni and Cr in soil solutions from different distances (2.5, 5 and 10 m) from the hard shoulder of the highway and from three soil depths (10, 30, and 50 cm) were investigated. The results show that heavy metal concentrations are up to 20 times increased compared to the geochemical background levels and a reference site of 800-m distance from the roadside. Soil matrix concentrations in the topsoil (0-10 cm) mostly exceeded the precautionary values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV). The concentrations of Cd, Pb and Zn in the soil matrix tended to decrease with distance from the roadside edge, whereas the concentrations in the soil solution increased at a distance of 10 m onwards due to a lower soil pH. Because of both high pH values and a high sorption capacity of the soils, soil solution concentrations seldom exceeded the trigger values of the German Federal Soil Protection and Contamination Ordinance (BBodSchV) for transferring soil solution to groundwater.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Automobiles/statistics & numerical data , Environmental Monitoring/methods , Germany , Soil/chemistry , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...