Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Struct Funct ; 227(1): 23-47, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34482443

ABSTRACT

Uncertainties concerning anatomy and function of cortico-subcortical projections have arisen during the recent years. A clear distinction between cortico-subthalamic (hyperdirect) and cortico-tegmental projections (superolateral medial forebrain bundle, slMFB) so far is elusive. Deep Brain Stimulation (DBS) of the slMFB (for major depression, MD and obsessive compulsive disorders, OCD) has on the one hand been interpreted as actually involving limbic (prefrontal) hyperdirect pathways. On the other hand slMFB's stimulation region in the mesencephalic ventral tegmentum is said to impact on other structures too, going beyond the antidepressant (or anti OCD) efficacy of sole modulation of the cortico-tegmental reward-associated pathways. We have here used a normative diffusion MRT template (HCP, n = 80) for long-range tractography and augmented this dataset with ex-vivo high resolution data (n = 1) in a stochastic brain space. We compared this data with histological information and used the high resolution ex-vivo data set to scrutinize the mesencephalic tegmentum for small fiber pathways present. Our work resolves an existing ambiguity between slMFB and prefrontal hyperdirect pathways which-for the first time-are described as co-existent. DBS of the slMFB does not appear to modulate prefrontal hyperdirect cortico-subthalamic but rather cortico-tegmental projections. Smaller fiber structures in the target region-as far as they can be discerned-appear not to be involved in slMFB DBS. Our work enfeebles previous anatomical criticism and strengthens the position of the slMFB DBS target for its use in MD and OCD.


Subject(s)
Prefrontal Cortex , Subthalamic Nucleus , Deep Brain Stimulation , Medial Forebrain Bundle , Tegmentum Mesencephali
2.
Sci Rep ; 4: 3849, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24458018

ABSTRACT

The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Lasers , Pressure , Computer Simulation , Humans , Laser-Doppler Flowmetry , Photons , Tumor Cells, Cultured
3.
Transplantation ; 91(4): 390-7, 2011 Feb 27.
Article in English | MEDLINE | ID: mdl-21169879

ABSTRACT

INTRODUCTION: The hippocampal formation is a specific structure in the brain where neurogenesis occurs throughout adulthood and in which the neuronal cell loss causes various demential states. The main goal of this study was to verify whether fetal neural progenitor cells (NPCs) from transgenic rats expressing green fluorescent protein (GFP) retain the ability to differentiate into neuronal cells and to integrate into the hippocampal circuitry after transplantation. METHODS: NPCs were isolated from E14 (gestational age: 14 days postconception) transgenic-Lewis and wild-type Sprague-Dawley rat embryos. Wild-type and transgenic cells were expanded and induced to differentiate into a neuronal lineage in vitro. Immunocytochemical and electrophysiological analysis were performed in both groups. GFP-expressing cells were implanted into the hippocampus and recorded electrophysiologically 3 months thereafter. Immunohistochemical analysis confirmed neuronal differentiation, and the yield of neuronal cells was determined stereologically. RESULTS: NPCs derived from wild-type and transgenic animals are similar regarding their ability to generate neuronal cells in vitro. Neuronal maturity was confirmed by immunocytochemistry and electrophysiology, with demonstration of voltage-gated ionic currents, firing activity, and spontaneous synaptic currents. GFP-NPCs were also able to differentiate into mature neurons after implantation into the hippocampus, where they formed functional synaptic contacts. CONCLUSIONS: GFP-transgenic cells represent an important tool in transplantation studies. Herein, we demonstrate their ability to generate functional neurons both in vitro and in vivo conditions. Neurons derived from fetal NPCs were able to integrate into the normal hippocampal circuitry. The high yield of mature neurons generated render these cells important candidates for restorative approaches based on cell therapy.


Subject(s)
Hippocampus/physiology , Neural Stem Cells/physiology , Neural Stem Cells/transplantation , Neurogenesis , Animals , Female , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/analysis , Hippocampus/cytology , Intermediate Filament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nestin , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Rats, Transgenic
4.
Behav Brain Res ; 199(2): 317-25, 2009 May 16.
Article in English | MEDLINE | ID: mdl-19124044

ABSTRACT

Functional sensorimotor recovery after transplantation of mesencephalic dopaminergic (DAergic) neurons has been well documented in the rat 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. However, the functional restoration of more specific gait-related patterns such as skilled walking, balance, and individual limb movements have been insufficiently studied. The purpose of this study was to investigate the behavioural effects of intrastriatal DA grafts on different aspects of normal and skilled walking in rats following unilateral 6-OHDA lesions of the medial forebrain bundle. Rats were subjected to drug-induced rotation, detailed footprint analysis, and assessment of skilled walking in the ladder rung walking test prior and after the transplantation of E14 ventral mesencephalon-derived progenitor cells. Good DAergic graft survival, as revealed by immunohistochemistry, was accompanied by a compensation of drug-induced rotational asymmetries. Interestingly, the analysis of walking patterns displayed a heterogeneous graft-induced response in skilled and non-skilled limb use. Grafted animals made fewer errors with their contralateral limbs in skilled walking than the sham-transplanted rats, and they improved their ipsi- and contralateral limb rotation. However, the parameter distance between feet showed a delayed recovery, and the stride length was not affected by the DA grafts at all. These findings indicate that ectopic intrastriatal transplantation of E14 ventral mesencephalon-derived cells promotes recovery of gait balance and stability, but does not ameliorate the shuffling gait pattern associated with 6-OHDA lesions. A full restoration of locomotor gait pattern might require a more complete and organotypic reconstruction of the mesotelencephalic DAergic pathway.


Subject(s)
Brain Tissue Transplantation/methods , Corpus Striatum/surgery , Dopamine/metabolism , Gait/physiology , Mesencephalon/transplantation , Neurons/transplantation , Parkinsonian Disorders/surgery , Stem Cell Transplantation/methods , Animals , Female , Fetal Tissue Transplantation/methods , Graft Survival , Medial Forebrain Bundle/drug effects , Mesencephalon/cytology , Oxidopamine , Parkinsonian Disorders/chemically induced , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...