Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 89(1): 506-19, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15863479

ABSTRACT

beta-sheet proteins are generally more able to resist mechanical deformation than alpha-helical proteins. Experiments measuring the mechanical resistance of beta-sheet proteins extended by their termini led to the hypothesis that parallel, directly hydrogen-bonded terminal beta-strands provide the greatest mechanical strength. Here we test this hypothesis by measuring the mechanical properties of protein L, a domain with a topology predicted to be mechanically strong, but with no known mechanical function. A pentamer of this small, topologically simple protein is resistant to mechanical deformation over a wide range of extension rates. Molecular dynamics simulations show the energy landscape for protein L is highly restricted for mechanical unfolding and that this protein unfolds by the shearing apart of two structural units in a mechanism similar to that proposed for ubiquitin, which belongs to the same structural class as protein L, but unfolds at a significantly higher force. These data suggest that the mechanism of mechanical unfolding is conserved in proteins within the same fold family and demonstrate that although the topology and presence of a hydrogen-bonded clamp are of central importance in determining mechanical strength, hydrophobic interactions also play an important role in modulating the mechanical resistance of these similar proteins.


Subject(s)
Bacterial Proteins/chemistry , Biophysics/methods , DNA-Binding Proteins/chemistry , Microscopy, Atomic Force/methods , Hydrogen Bonding , Kinetics , Models, Molecular , Models, Statistical , Monte Carlo Method , Peptostreptococcus/metabolism , Protein Conformation , Protein Denaturation , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Proteins/chemistry , Stress, Mechanical , Temperature , Time Factors , Ubiquitin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...