Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 85(3): 671-80, 2016 05.
Article in English | MEDLINE | ID: mdl-26781835

ABSTRACT

Warming global temperatures are driving changes in species distributions, growth and timing, but much uncertainty remains regarding how climate change will alter species interactions. Consumer-Resource interactions in particular can be strongly impacted by changes to the relative performance of interacting species. While consumers generally gain an advantage over their resources with increasing temperatures, nonlinearities can change this relation near temperature extremes. We use an experimental approach to determine how temperature changes between 5 and 30 °C will alter the growth of the algae Scenedesmus obliquus and the functional responses of the small-bodied Daphnia ambigua and the larger Daphnia pulicaria. The impact of warming generally followed expectations, making both Daphnia species more effective grazers, with the increase in feeding rates outpacing the increases in algal growth rate. At the extremes of our temperature range, however, warming resulted in a decrease in Daphnia grazing effectiveness. Between 25 and 30 °C, both species of Daphnia experienced a precipitous drop in feeding rates, while algal growth rates remained high, increasing the likelihood of algal blooms in warming summer temperatures. Daphnia pulicaria performed significantly better at cold temperatures than D. ambigua, but by 20 °C, there was no significant difference between the two species, and at 25 °C, D. ambigua outperformed D. pulicaria. Warming summer temperatures will favour the smaller D. ambigua, but only over a narrow temperature range, and warming beyond 25 °C could open D. ambigua to invasion from tropical species. By fitting our results to temperature-dependent functions, we develop a temperature- and density-dependent model, which produces a metric of grazing effectiveness, quantifying the grazer density necessary to halt algal growth. This approach should prove useful for tracking the transient dynamics of other density-dependent consumer-resource interactions, such as agricultural pests and biological-control agents.


Subject(s)
Daphnia/physiology , Feeding Behavior/physiology , Scenedesmus/growth & development , Temperature , Animals , Climate Change , Female , Food Chain , Population Dynamics , Species Specificity
2.
Ecol Lett ; 14(3): 289-94, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21299824

ABSTRACT

The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback.


Subject(s)
Fresh Water , Plant Leaves/metabolism , Carbon Cycle , Carbon Dioxide , Carbon Sequestration , Climate Change , Ecosystem , Plants/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...