Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Alzheimers Dement ; 19(11): 4805-4816, 2023 11.
Article in English | MEDLINE | ID: mdl-37017243

ABSTRACT

INTRODUCTION: The ketogenic diet (KD) is an intriguing therapeutic candidate for Alzheimer's disease (AD) given its protective effects against metabolic dysregulation and seizures. Gut microbiota are essential for KD-mediated neuroprotection against seizures as well as modulation of bile acids, which play a major role in cholesterol metabolism. These relationships motivated our analysis of gut microbiota and metabolites related to cognitive status following a controlled KD intervention compared with a low-fat-diet intervention. METHODS: Prediabetic adults, either with mild cognitive impairment (MCI) or cognitively normal (CN), were placed on either a low-fat American Heart Association diet or high-fat modified Mediterranean KD (MMKD) for 6 weeks; then, after a 6-week washout period, they crossed over to the alternate diet. We collected stool samples for shotgun metagenomics and untargeted metabolomics at five time points to investigate individuals' microbiome and metabolome throughout the dietary interventions. RESULTS: Participants with MCI on the MMKD had lower levels of GABA-producing microbes Alistipes sp. CAG:514 and GABA, and higher levels of GABA-regulating microbes Akkermansia muciniphila. MCI individuals with curcumin in their diet had lower levels of bile salt hydrolase-containing microbes and an altered bile acid pool, suggesting reduced gut motility. DISCUSSION: Our results suggest that the MMKD may benefit adults with MCI through modulation of GABA levels and gut-transit time.


Subject(s)
Alzheimer Disease , Microbiota , United States , Humans , Adult , Alzheimer Disease/metabolism , Diet, Fat-Restricted , Metabolome/physiology , Seizures , Ketone Bodies , gamma-Aminobutyric Acid/metabolism
3.
Sci Rep ; 12(1): 17034, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36220843

ABSTRACT

Observational studies have shown that the composition of the human gut microbiome in children diagnosed with Autism Spectrum Disorder (ASD) differs significantly from that of their neurotypical (NT) counterparts. Thus far, reported ASD-specific microbiome signatures have been inconsistent. To uncover reproducible signatures, we compiled 10 publicly available raw amplicon and metagenomic sequencing datasets alongside new data generated from an internal cohort (the largest ASD cohort to date), unified them with standardized pre-processing methods, and conducted a comprehensive meta-analysis of all taxa and variables detected across multiple studies. By screening metadata to test associations between the microbiome and 52 variables in multiple patient subsets and across multiple datasets, we determined that differentially abundant taxa in ASD versus NT children were dependent upon age, sex, and bowel function, thus marking these variables as potential confounders in case-control ASD studies. Several taxa, including the strains Bacteroides stercoris t__190463 and Clostridium M bolteae t__180407, and the species Granulicatella elegans and Massilioclostridium coli, exhibited differential abundance in ASD compared to NT children only after subjects with bowel dysfunction were removed. Adjusting for age, sex and bowel function resulted in adding or removing significantly differentially abundant taxa in ASD-diagnosed individuals, emphasizing the importance of collecting and controlling for these metadata. We have performed the largest (n = 690) and most comprehensive systematic analysis of ASD gut microbiome data to date. Our study demonstrated the importance of accounting for confounding variables when designing statistical comparative analyses of ASD- and NT-associated gut bacterial profiles. Mitigating these confounders identified robust microbial signatures across cohorts, signifying the importance of accounting for these factors in comparative analyses of ASD and NT-associated gut profiles. Such studies will advance the understanding of different patient groups to deliver appropriate therapeutics by identifying microbiome traits germane to the specific ASD phenotype.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Microbiota , Autism Spectrum Disorder/genetics , Bacteria/genetics , Child , Gastrointestinal Microbiome/genetics , Humans , Metagenome
4.
Nat Biotechnol ; 40(12): 1774-1779, 2022 12.
Article in English | MEDLINE | ID: mdl-35798960

ABSTRACT

Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data.


Subject(s)
Metadata , Tandem Mass Spectrometry , Humans , Metabolomics/methods
5.
NPJ Sci Food ; 6(1): 22, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35444218

ABSTRACT

There is a growing interest in unraveling the chemical complexity of our diets. To help the scientific community gain insight into the molecules present in foods and beverages that we ingest, we created foodMASST, a search tool for MS/MS spectra (of both known and unknown molecules) against a growing metabolomics food and beverage reference database. We envision foodMASST will become valuable for nutrition research and to assess the potential uniqueness of dietary biomarkers to represent specific foods or food classes.

6.
Front Microbiol ; 11: 595910, 2020.
Article in English | MEDLINE | ID: mdl-33343536

ABSTRACT

Metabolomic analyses of human gut microbiome samples can unveil the metabolic potential of host tissues and the numerous microorganisms they support, concurrently. As such, metabolomic information bears immense potential to improve disease diagnosis and therapeutic drug discovery. Unfortunately, as cohort sizes increase, comprehensive metabolomic profiling becomes costly and logistically difficult to perform at a large scale. To address these difficulties, we tested the feasibility of predicting the metabolites of a microbial community based solely on microbiome sequencing data. Paired microbiome sequencing (16S rRNA gene amplicons, shotgun metagenomics, and metatranscriptomics) and metabolome (mass spectrometry and nuclear magnetic resonance spectroscopy) datasets were collected from six independent studies spanning multiple diseases. We used these datasets to evaluate two reference-based gene-to-metabolite prediction pipelines and a machine-learning (ML) based metabolic profile prediction approach. With the pre-trained model on over 900 microbiome-metabolome paired samples, the ML approach yielded the most accurate predictions (i.e., highest F1 scores) of metabolite occurrences in the human gut and outperformed reference-based pipelines in predicting differential metabolites between case and control subjects. Our findings demonstrate the possibility of predicting metabolites from microbiome sequencing data, while highlighting certain limitations in detecting differential metabolites, and provide a framework to evaluate metabolite prediction pipelines, which will ultimately facilitate future investigations on microbial metabolites and human health.

SELECTION OF CITATIONS
SEARCH DETAIL
...