Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Sleep Med ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652493

ABSTRACT

STUDY OBJECTIVES: A growing body of literature suggests that deep brain stimulation (DBS) to treat motor symptoms of Parkinson's disease (PD) may also ameliorate certain sleep deficits. Many foundational studies have examined the impact of stimulation on sleep following several months of therapy, leaving an open question regarding the time course for improvement. It is unknown whether sleep improvement will immediately follow onset of therapy or accrete over a prolonged period of stimulation. The objective of our study was to address this knowledge gap by assessing the impact of DBS on sleep macro-architecture during the first nights of stimulation. METHODS: Polysomnograms were recorded for three consecutive nights in 14 patients with advanced PD (10 male, 4 female; age: 53-74 years), with intermittent, unilateral subthalamic nucleus DBS on the final night or two. Sleep scoring was determined manually by a consensus of four experts. Sleep macro-architecture was objectively quantified using the percentage, latency, and mean bout length of wake after sleep onset (WASO) and on each stage of sleep (REM and NREM stages N1, N2, N3). RESULTS: Sleep was found to be highly disrupted in all nights. Sleep architecture on nights without stimulation was consistent with prior results in treatment naive patients with PD. No statistically significant difference was observed due to stimulation. CONCLUSIONS: These objective measures suggest that one night of intermittent subthreshold stimulation appears insufficient to impact sleep macro-architecture. CLINICAL TRIAL REGISTRATION: Name: Adaptive Neurostimulation to Restore Sleep in Parkinson's Disease; URL: https://clinicaltrials.gov/ct2/show/NCT04620551; Identifier: NCT04620551.

2.
Sleep Med ; 107: 236-242, 2023 07.
Article in English | MEDLINE | ID: mdl-37257366

ABSTRACT

OBJECTIVE: Sleep dysregulation in Parkinson's disease (PD) has been hypothesized to occur, in part, from dysfunction in the basal ganglia-cortical circuit. Assessment of this relationship requires accurate sleep stage determination, a known challenge in this clinical population. Our objective was to optimize the consensus on the sleep staging process and reduce interrater variability in a cohort of advanced PD subjects. METHODS: Fifteen PD subjects were enrolled from three sites in a clinical trial that involved recordings from subthalamic nucleus (STN) deep brain stimulation (DBS) leads (NCT04620551). Video polysomnography (vPSG) data for a total of 45 nights were analyzed. Four experienced scorers independently scored data on initial review. Epochs with less than 75% consensus were flagged for secondary review. In secondary review of discordant epochs, two of the original scorers re-assessed epochs, from which the final consensus stage was derived. RESULTS: Sleep stage classification agreement averaged 83.10% across all sleep stages on initial scoring (IS), and on secondary consensus scoring (CS) review, agreement reached 96.58%. Greatest disagreement was noted in determination of awake epochs (33.6% of discordant epochs) and non-rapid-eye-movement stage 2 (N2) epochs (31.8% of discordant epochs). Scoring discrepancy was resolved with direct measurement of cortical frequency and amplitudes, physiologic context of the epoch, and video review. CONCLUSION: Our method of multi-level initial and then secondary consensus review scoring resulted in consensus scoring agreement superior to conventional standards. This work features a custom-engineered vPSG software and review platform for integration of consensus sleep stage scoring in a multi-site clinical trial.


Subject(s)
Parkinson Disease , Humans , Consensus , Observer Variation , Parkinson Disease/complications , Reproducibility of Results , Sleep , Sleep Stages/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...