Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
2.
Dev Dyn ; 250(3): 414-449, 2021 03.
Article in English | MEDLINE | ID: mdl-33314394

ABSTRACT

Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load-bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair.


Subject(s)
Bone and Bones/embryology , Cell Differentiation , Chondrocytes/metabolism , Chondrogenesis , Osteoblasts/metabolism , Osteogenesis/physiology , Animals , Humans
4.
JCI Insight ; 5(23)2020 10 27.
Article in English | MEDLINE | ID: mdl-33108146

ABSTRACT

Pituitary developmental defects lead to partial or complete hormone deficiency and significant health problems. The majority of cases are sporadic and of unknown cause. We screened 28 patients with pituitary stalk interruption syndrome (PSIS) for mutations in the FAT/DCHS family of protocadherins that have high functional redundancy. We identified seven variants, four of which putatively damaging, in FAT2 and DCHS2 in six patients with pituitary developmental defects recruited through a cohort of patients with mostly ectopic posterior pituitary gland and/or pituitary stalk interruption. All patients had growth hormone deficiency and two presented with multiple hormone deficiencies and small glands. FAT2 and DCHS2 were strongly expressed in the mesenchyme surrounding the normal developing human pituitary. We analyzed Dchs2-/- mouse mutants and identified anterior pituitary hypoplasia and partially penetrant infundibular defects. Overlapping infundibular abnormalities and distinct anterior pituitary morphogenesis defects were observed in Fat4-/- and Dchs1-/- mouse mutants but all animal models displayed normal commitment to the anterior pituitary cell type. Together our data implicate FAT/DCHS protocadherins in normal hypothalamic-pituitary development and identify FAT2 and DCHS2 as candidates underlying pituitary gland developmental defects such as ectopic pituitary gland and/or pituitary stalk interruption.


Subject(s)
Cadherin Related Proteins/genetics , Cadherins/genetics , Pituitary Diseases/genetics , Adolescent , Animals , Cadherin Related Proteins/metabolism , Cadherins/metabolism , Female , Humans , Hypothalamus/growth & development , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Pituitary Gland/growth & development , Pituitary Gland/metabolism , Young Adult
5.
Development ; 146(14)2019 07 29.
Article in English | MEDLINE | ID: mdl-31358536

ABSTRACT

In human, mutations of the protocadherins FAT4 and DCHS1 result in Van Maldergem syndrome, which is characterised, in part, by craniofacial abnormalities. Here, we analyse the role of Dchs1-Fat4 signalling during osteoblast differentiation in mouse. We show that Fat4 and Dchs1 mutants mimic the craniofacial phenotype of the human syndrome and that Dchs1-Fat4 signalling is essential for osteoblast differentiation. In Dchs1/Fat4 mutants, proliferation of osteoprogenitors is increased and osteoblast differentiation is delayed. We show that loss of Dchs1-Fat4 signalling is linked to increased Yap-Tead activity and that Yap is expressed and required for proliferation in osteoprogenitors. In contrast, Taz is expressed in more-committed Runx2-expressing osteoblasts, Taz does not regulate osteoblast proliferation and Taz-Tead activity is unaffected in Dchs1/Fat4 mutants. Finally, we show that Yap and Taz differentially regulate the transcriptional activity of Runx2, and that the activity of Yap-Runx2 and Taz-Runx2 complexes is altered in Dchs1/Fat4 mutant osteoblasts. In conclusion, these data identify Dchs1-Fat4 as a signalling pathway in osteoblast differentiation, reveal its crucial role within the early Runx2 progenitors, and identify distinct requirements for Yap and Taz during osteoblast differentiation.


Subject(s)
Cadherins/physiology , Osteoblasts/physiology , Osteogenesis/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Animals , Animals, Newborn , Cell Differentiation/genetics , Cells, Cultured , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/pathology , Disease Models, Animal , Embryo, Mammalian , Female , Foot Deformities, Congenital/genetics , Foot Deformities, Congenital/pathology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/pathology , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Joint Instability/genetics , Joint Instability/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Signal Transduction/genetics
7.
Lancet Infect Dis ; 18(6): 640-649, 2018 06.
Article in English | MEDLINE | ID: mdl-29650424

ABSTRACT

BACKGROUND: Scale-up of insecticide-based interventions has averted more than 500 million malaria cases since 2000. Increasing insecticide resistance could herald a rebound in disease and mortality. We aimed to investigate whether insecticide resistance was associated with loss of effectiveness of long-lasting insecticidal nets and increased malaria disease burden. METHODS: This WHO-coordinated, prospective, observational cohort study was done at 279 clusters (villages or groups of villages in which phenotypic resistance was measurable) in Benin, Cameroon, India, Kenya, and Sudan. Pyrethroid long-lasting insecticidal nets were the principal form of malaria vector control in all study areas; in Sudan this approach was supplemented by indoor residual spraying. Cohorts of children from randomly selected households in each cluster were recruited and followed up by community health workers to measure incidence of clinical malaria and prevalence of infection. Mosquitoes were assessed for susceptibility to pyrethroids using the standard WHO bioassay test. Country-specific results were combined using meta-analysis. FINDINGS: Between June 2, 2012, and Nov 4, 2016, 40 000 children were enrolled and assessed for clinical incidence during 1·4 million follow-up visits. 80 000 mosquitoes were assessed for insecticide resistance. Long-lasting insecticidal net users had lower infection prevalence (adjusted odds ratio [OR] 0·63, 95% CI 0·51-0·78) and disease incidence (adjusted rate ratio [RR] 0·62, 0·41-0·94) than did non-users across a range of resistance levels. We found no evidence of an association between insecticide resistance and infection prevalence (adjusted OR 0·86, 0·70-1·06) or incidence (adjusted RR 0·89, 0·72-1·10). Users of nets, although significantly better protected than non-users, were nevertheless subject to high malaria infection risk (ranging from an average incidence in net users of 0·023, [95% CI 0·016-0·033] per person-year in India, to 0·80 [0·65-0·97] per person year in Kenya; and an average infection prevalence in net users of 0·8% [0·5-1·3] in India to an average infection prevalence of 50·8% [43·4-58·2] in Benin). INTERPRETATION: Irrespective of resistance, populations in malaria endemic areas should continue to use long-lasting insecticidal nets to reduce their risk of infection. As nets provide only partial protection, the development of additional vector control tools should be prioritised to reduce the unacceptably high malaria burden. FUNDING: Bill & Melinda Gates Foundation, UK Medical Research Council, and UK Department for International Development.


Subject(s)
Culicidae , Insecticide-Treated Bednets , Malaria , Mosquito Control , Mosquito Vectors , Pyrethrins , Adolescent , Animals , Child , Child, Preschool , Humans , Infant , Africa South of the Sahara/epidemiology , Cohort Studies , Culicidae/drug effects , India/epidemiology , Insecticide Resistance , Internationality , Malaria/epidemiology , Malaria/transmission , Mosquito Control/methods , Mosquito Vectors/drug effects , Prospective Studies , Pyrethrins/pharmacology , World Health Organization
8.
Cereb Cortex ; 28(6): 2192-2206, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29668850

ABSTRACT

Truncating CHD8 mutations are amongst the highest confidence risk factors for autism spectrum disorder (ASD) identified to date. Here, we report that Chd8 heterozygous mice display increased brain size, motor delay, hypertelorism, pronounced hypoactivity, and anomalous responses to social stimuli. Whereas gene expression in the neocortex is only mildly affected at midgestation, over 600 genes are differentially expressed in the early postnatal neocortex. Genes involved in cell adhesion and axon guidance are particularly prominent amongst the downregulated transcripts. Resting-state functional MRI identified increased synchronized activity in cortico-hippocampal and auditory-parietal networks in Chd8 heterozygous mutant mice, implicating altered connectivity as a potential mechanism underlying the behavioral phenotypes. Together, these data suggest that altered brain growth and diminished expression of important neurodevelopmental genes that regulate long-range brain wiring are followed by distinctive anomalies in functional brain connectivity in Chd8+/- mice. Human imaging studies have reported altered functional connectivity in ASD patients, with long-range under-connectivity seemingly more frequent. Our data suggest that CHD8 haploinsufficiency represents a specific subtype of ASD where neuropsychiatric symptoms are underpinned by long-range over-connectivity.


Subject(s)
Brain/physiopathology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Neural Pathways/physiopathology , Animals , Autism Spectrum Disorder/genetics , Disease Models, Animal , Haploinsufficiency , Mice , Mice, Knockout , Neocortex/metabolism , Transcriptome
9.
Proc Natl Acad Sci U S A ; 114(52): E11267-E11275, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229808

ABSTRACT

Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36-3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40-0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions.


Subject(s)
Anopheles , Drug Resistance , Insecticides , Malaria, Falciparum , Mosquito Control/economics , Nitriles , Phenylcarbamates , Pyrethrins , Animals , Child , Child, Preschool , Costs and Cost Analysis , Female , Humans , Incidence , Insecticides/economics , Insecticides/pharmacology , Malaria, Falciparum/economics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Male , Nitriles/economics , Nitriles/pharmacology , Phenylcarbamates/economics , Phenylcarbamates/pharmacology , Pyrethrins/economics , Pyrethrins/pharmacology , Sudan/epidemiology
10.
Arterioscler Thromb Vasc Biol ; 37(9): 1732-1735, 2017 09.
Article in English | MEDLINE | ID: mdl-28705793

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the role of Fat4 and Dachsous1 signaling in the lymphatic vasculature. APPROACH AND RESULTS: Phenotypic analysis of the lymphatic vasculature was performed in mice lacking functional Fat4 or Dachsous1. The overall architecture of lymphatic vasculature is unaltered, yet both genes are specifically required for lymphatic valve morphogenesis. Valve endothelial cells (Prox1high [prospero homeobox protein 1] cells) are disoriented and failed to form proper valve leaflets. Using Lifeact-GFP (green fluorescent protein) mice, we revealed that valve endothelial cells display prominent actin polymerization. Finally, we showed the polarized recruitment of Dachsous1 to membrane protrusions and cellular junctions of valve endothelial cells in vivo and in vitro. CONCLUSIONS: Our data demonstrate that Fat4 and Dachsous1 are critical regulators of valve morphogenesis. This study highlights that valve defects may contribute to lymphedema in Hennekam syndrome caused by Fat4 mutations.


Subject(s)
Cadherins/metabolism , Cell Movement , Endothelial Cells/metabolism , Endothelium, Lymphatic/metabolism , Lymphangiogenesis , Lymphatic Vessels/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cadherins/deficiency , Cadherins/genetics , Cells, Cultured , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/pathology , Endothelial Cells/pathology , Endothelium, Lymphatic/pathology , Fluorescent Antibody Technique , Genetic Predisposition to Disease , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/genetics , Humans , Lymphangiectasis, Intestinal/genetics , Lymphangiectasis, Intestinal/metabolism , Lymphangiectasis, Intestinal/pathology , Lymphatic Vessels/pathology , Lymphedema/genetics , Lymphedema/metabolism , Lymphedema/pathology , Mice, Knockout , Mutation , Phenotype , Protein Multimerization , Signal Transduction , Transfection , Tumor Suppressor Proteins/genetics
11.
Emerg Infect Dis ; 23(5): 758-764, 2017 05.
Article in English | MEDLINE | ID: mdl-28418293

ABSTRACT

Insecticide resistance might reduce the efficacy of malaria vector control. In 2013 and 2014, malaria vectors from 50 villages, of varying pyrethroid resistance, in western Kenya were assayed for resistance to deltamethrin. Long-lasting insecticide-treated nets (LLIN) were distributed to households at universal coverage. Children were recruited into 2 cohorts, cleared of malaria-causing parasites, and tested every 2 weeks for reinfection. Infection incidence rates for the 2 cohorts were 2.2 (95% CI 1.9-2.5) infections/person-year and 2.8 (95% CI 2.5-3.0) infections/person-year. LLIN users had lower infection rates than non-LLIN users in both low-resistance (rate ratio 0.61, 95% CI 0.42-0.88) and high-resistance (rate ratio 0.55, 95% CI 0.35-0.87) villages (p = 0.63). The association between insecticide resistance and infection incidence was not significant (p = 0.99). Although the incidence of infection was high among net users, LLINs provided significant protection (p = 0.01) against infection with malaria parasite regardless of vector insecticide resistance.


Subject(s)
Insecticide Resistance , Insecticide-Treated Bednets , Insecticides , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Animals , Child , Child, Preschool , Cohort Studies , Female , Follow-Up Studies , Humans , Incidence , Infant , Insecticides/pharmacology , Kenya/epidemiology , Malaria/parasitology , Malaria/transmission , Male , Mosquito Control/methods , Mosquito Vectors/parasitology , Public Health Surveillance
12.
PLoS One ; 11(8): e0159657, 2016.
Article in English | MEDLINE | ID: mdl-27519049

ABSTRACT

Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages.


Subject(s)
Bone Density , Cancellous Bone/pathology , Chondrocytes/pathology , Osteogenesis/physiology , Tissue Inhibitor of Metalloproteinase-3/metabolism , Animals , Cancellous Bone/metabolism , Chondrocytes/metabolism , Female , Matrix Metalloproteinases/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic , Tissue Inhibitor of Metalloproteinase-3/genetics
13.
Development ; 143(13): 2367-75, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27381226

ABSTRACT

The protocadherins Fat4 and Dchs1 act as a receptor-ligand pair to regulate many developmental processes in mice and humans, including development of the vertebrae. Based on conservation of function between Drosophila and mammals, Fat4-Dchs1 signalling has been proposed to regulate planar cell polarity (PCP) and activity of the Hippo effectors Yap and Taz, which regulate cell proliferation, survival and differentiation. There is strong evidence for Fat regulation of PCP in mammals but the link with the Hippo pathway is unclear. In Fat4(-/-) and Dchs1(-/-) mice, many vertebrae are split along the midline and fused across the anterior-posterior axis, suggesting that these defects might arise due to altered cell polarity and/or changes in cell proliferation/differentiation. We show that the somite and sclerotome are specified appropriately, the transcriptional network that drives early chondrogenesis is intact, and that cell polarity within the sclerotome is unperturbed. We find that the key defect in Fat4 and Dchs1 mutant mice is decreased proliferation in the early sclerotome. This results in fewer chondrogenic cells within the developing vertebral body, which fail to condense appropriately along the midline. Analysis of Fat4;Yap and Fat4;Taz double mutants, and expression of their transcriptional target Ctgf, indicates that Fat4-Dchs1 regulates vertebral development independently of Yap and Taz. Thus, we have identified a new pathway crucial for the development of the vertebrae and our data indicate that novel mechanisms of Fat4-Dchs1 signalling have evolved to control cell proliferation within the developing vertebrae.


Subject(s)
Cadherins/metabolism , Signal Transduction , Spine/cytology , Spine/embryology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cell Polarity , Cell Proliferation , Mice, Mutant Strains , Morphogenesis , Mutation/genetics , Phosphoproteins/metabolism , Spine/metabolism , Trans-Activators , YAP-Signaling Proteins
14.
Dev Dyn ; 245(9): 947-62, 2016 09.
Article in English | MEDLINE | ID: mdl-27264541

ABSTRACT

BACKGROUND: Lineage tracing has shown that most of the facial skeleton is derived from cranial neural crest cells. However, the local signals that influence postmigratory, neural crest-derived mesenchyme also play a major role in patterning the skeleton. Here, we study the role of BMP signaling in regulating the fate of chondro-osteoprogenitor cells in the face. RESULTS: A single Noggin-soaked bead inserted into stage 15 chicken embryos induced an ectopic cartilage resembling the interorbital septum within the palate and other midline structures. In contrast, the same treatment in stage 20 embryos caused a loss of bones. The molecular basis for the stage-specific response to Noggin lay in the simultaneous up-regulation of SOX9 and downregulation of RUNX2 in the maxillary mesenchyme, increased cell adhesiveness as shown by N-cadherin induction around the beads and increased RA pathway gene expression. None of these changes were observed in stage 20 embryos. CONCLUSIONS: These experiments demonstrate how slight changes in expression of growth factors such as BMPs could lead to gain or loss of cartilage in the upper jaw during vertebrate evolution. In addition, BMPs have at least two roles: one in patterning the skull and another in regulating the skeletogenic fates of neural crest-derived mesenchyme. Developmental Dynamics 245:947-962, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Mesoderm/cytology , Mesoderm/physiology , Stem Cells/cytology , Stem Cells/physiology , Animals , Bone Morphogenetic Proteins/genetics , Carrier Proteins/pharmacology , Chick Embryo , Face/embryology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Mesoderm/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Signal Transduction/drug effects , Stem Cells/metabolism
15.
Nat Commun ; 7: 11469, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27145737

ABSTRACT

Skeletal shape varies widely across species as adaptation to specialized modes of feeding and locomotion, but how skeletal shape is established is unknown. An example of extreme diversity in the shape of a skeletal structure can be seen in the sternum, which varies considerably across species. Here we show that the Dchs1-Fat4 planar cell polarity pathway controls cell orientation in the early skeletal condensation to define the shape and relative dimensions of the mouse sternum. These changes fit a model of cell intercalation along differential Dchs1-Fat4 activity that drives a simultaneous narrowing, thickening and elongation of the sternum. Our results identify the regulation of cellular polarity within the early pre-chondrogenic mesenchyme, when skeletal shape is established, and provide the first demonstration that Fat4 and Dchs1 establish polarized cell behaviour intrinsically within the mesenchyme. Our data also reveal the first indication that cell intercalation processes occur during ventral body wall elongation and closure.


Subject(s)
Bone and Bones/embryology , Bone and Bones/metabolism , Cadherins/metabolism , Cell Polarity , Animals , Cadherins/genetics , Mesoderm/growth & development , Mesoderm/metabolism , Mice , Mice, Knockout , Morphogenesis , Signal Transduction , Sternum/embryology , Sternum/metabolism
16.
Front Physiol ; 7: 114, 2016.
Article in English | MEDLINE | ID: mdl-27065882

ABSTRACT

The pituitary gland is a primary endocrine organ that controls major physiological processes. Abnormal development or homeostatic disruptions can lead to human disorders such as hypopituitarism or tumors. Multiple signaling pathways, including WNT, BMP, FGF, and SHH regulate pituitary development but the role of the Hippo-YAP1/TAZ cascade is currently unknown. In multiple tissues, the Hippo kinase cascade underlies neoplasias; it influences organ size through the regulation of proliferation and apoptosis, and has roles in determining stem cell potential. We have used a sensitive mRNA in situ hybridization method (RNAscope) to determine the expression patterns of the Hippo pathway components during mouse pituitary development. We have also carried out immunolocalisation studies to determine when YAP1 and TAZ, the transcriptional effectors of the Hippo pathway, are active. We find that YAP1/TAZ are active in the stem/progenitor cell population throughout development and at postnatal stages, consistent with their role in promoting the stem cell state. Our results demonstrate for the first time the collective expression of major components of the Hippo pathway during normal embryonic and postnatal development of the pituitary gland.

18.
PLoS One ; 10(11): e0142671, 2015.
Article in English | MEDLINE | ID: mdl-26569492

ABSTRACT

Indoor residual spraying (IRS) combined with insecticide treated nets (ITN) has been implemented together in several sub-Saharan countries with inconclusive evidence that the combined intervention provides added benefit. The impact on malaria transmission was evaluated in a cluster randomised trial comparing two rounds of IRS with bendiocarb plus universal coverage ITNs, with ITNs alone in northern Tanzania. From April 2011 to December 2012, eight houses in 20 clusters per study arm were sampled monthly for one night with CDC light trap collections. Anopheles gambiae s.l. were identified to species using real time PCR Taq Man and tested for the presence of Plasmodium falciparum circumsporozoite protein. ITN and IRS coverage was estimated from household surveys. IRS coverage was more than 85% in two rounds of spraying in January and April 2012. Household coverage with at least one ITN per house was 94.7% after the universal coverage net campaign in the baseline year and the proportion of household with all sleeping places covered by LLIN was 50.1% decreasing to 39.1% by the end of the intervention year. An.gambiae s.s. comprised 80% and An.arabiensis 18.3% of the anopheline collection in the baseline year. Mean An.gambiae s.l. density in the ITN+IRS arm was reduced by 84% (95%CI: 56%-94%, p = 0.001) relative to the ITN arm. In the stratum of clusters categorised as high anopheline density at baseline EIR was lower in the ITN+IRS arm compared to the ITN arm (0.5 versus 5.4 per house per month, Incidence Rate Ratio: 0.10, 95%CI: 0.01-0.66, p-value for interaction <0.001). This trial provides conclusive evidence that combining carbamate IRS and ITNs produces major reduction in Anopheles density and entomological inoculation rate compared to ITN alone in an area of moderate coverage of LLIN and high pyrethroid resistance in An.gambiae s.s.


Subject(s)
Communicable Disease Control/methods , Insect Vectors , Insecticide-Treated Bednets , Insecticides/administration & dosage , Malaria, Falciparum/prevention & control , Mosquito Control/methods , Animals , Anopheles , Drug Resistance , Family Characteristics , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Phenylcarbamates/administration & dosage , Plasmodium falciparum , Polymerase Chain Reaction , Population Density , Population Dynamics , Species Specificity , Tanzania/epidemiology
19.
Malar J ; 14: 282, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26194648

ABSTRACT

BACKGROUND: Progress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides. The design of the study is described in this paper. METHODS: Malaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in local vectors were monitored in each of approximately 300 separate locations (clusters) with high coverage of malaria vector control over multiple malaria seasons. Phenotypic and genotypic resistance was assessed annually. In two countries, Sudan and India, clusters were randomly assigned to receive universal coverage of ITNs only, or universal coverage of ITNs combined with high coverage of IRS. Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and insecticide resistance were estimated, respectively. RESULTS: Cohorts have been set up in all five countries, and phenotypic resistance data have been collected in all clusters. In Sudan, Kenya, Cameroon and Benin data collection is due to be completed in 2015. In India data collection will be completed in 2016. DISCUSSION: The paper discusses challenges faced in the design and execution of the study, the analysis plan, the strengths and weaknesses, and the possible alternatives to the chosen study design.


Subject(s)
Culicidae/drug effects , Insect Vectors/drug effects , Insecticide Resistance , Malaria/epidemiology , Malaria/prevention & control , Africa South of the Sahara/epidemiology , Animals , Child, Preschool , Female , Humans , India/epidemiology , Infant , Infant, Newborn , Insecticides/pharmacology , Malaria/transmission , Mosquito Control/methods , Prevalence
20.
Development ; 142(15): 2574-85, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26116666

ABSTRACT

Formation of the kidney requires reciprocal signaling among the ureteric tubules, cap mesenchyme and surrounding stromal mesenchyme to orchestrate complex morphogenetic events. The protocadherin Fat4 influences signaling from stromal to cap mesenchyme cells to regulate their differentiation into nephrons. Here, we characterize the role of a putative binding partner of Fat4, the protocadherin Dchs1. Mutation of Dchs1 in mice leads to increased numbers of cap mesenchyme cells, which are abnormally arranged around the ureteric bud tips, and impairment of nephron morphogenesis. Mutation of Dchs1 also reduces branching of the ureteric bud and impairs differentiation of ureteric bud tip cells into trunk cells. Genetically, Dchs1 is required specifically within cap mesenchyme cells. The similarity of Dchs1 phenotypes to stromal-less kidneys and to those of Fat4 mutants implicates Dchs1 in Fat4-dependent stroma-to-cap mesenchyme signaling. Antibody staining of genetic mosaics reveals that Dchs1 protein localization is polarized within cap mesenchyme cells, where it accumulates at the interface with stromal cells, implying that it interacts directly with a stromal protein. Our observations identify a role for Fat4 and Dchs1 in signaling between cell layers, implicate Dchs1 as a Fat4 receptor for stromal signaling that is essential for kidney development, and establish that vertebrate Dchs1 can be molecularly polarized in vivo.


Subject(s)
Cadherins/metabolism , Kidney/embryology , Mesenchymal Stem Cells/physiology , Morphogenesis/physiology , Signal Transduction/physiology , Animals , Cadherins/genetics , Galactosides , Histological Techniques , Image Processing, Computer-Assisted , Indoles , Mice , Microscopy, Confocal , Mutation/genetics , Nephrons/embryology , Ureter/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...