Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5045, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890296

ABSTRACT

The global energy budget is pivotal to understanding planetary evolution and climate behaviors. Assessing the energy budget of giant planets, particularly those with large seasonal cycles, however, remains a challenge without long-term observations. Evolution models of Saturn cannot explain its estimated Bond albedo and internal heat flux, mainly because previous estimates were based on limited observations. Here, we analyze the long-term observations recorded by the Cassini spacecraft and find notably higher Bond albedo (0.41 ± 0.02) and internal heat flux (2.84 ± 0.20 Wm-2) values than previous estimates. Furthermore, Saturn's global energy budget is not in a steady state and exhibits significant dynamical imbalances. The global radiant energy deficit at the top of the atmosphere, indicative of the planetary cooling of Saturn, reveals remarkable seasonal fluctuations with a magnitude of 16.0 ± 4.2%. Further analysis of the energy budget of the upper atmosphere including the internal heat suggests seasonal energy imbalances at both global and hemispheric scales, contributing to the development of giant convective storms on Saturn. Similar seasonal variabilities of planetary cooling and energy imbalance exist in other giant planets within and beyond the Solar System, a prospect currently overlooked in existing evolutional and atmospheric models.

2.
Nature ; 551(7680): 302-303, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29144456
3.
Geophys Res Lett ; 44(7): 3000-3008, 2017 04 16.
Article in English | MEDLINE | ID: mdl-28603321

ABSTRACT

Past observations and modeling of Jupiter's thermosphere have, due to their limited resolution, suggested that heat generated by the aurora near the poles results in a smooth thermal gradient away from these aurorae, indicating a quiescent and diffuse flow of energy within the subauroral thermosphere. Here we discuss Very Large Telescope-Cryogenic High-Resolution IR Echelle Spectrometer observations that reveal a small-scale localized cooling of ~200 K within the nonauroral thermosphere. Using Infrared Telescope Facility NSFCam images, this feature is revealed to be quasi-stable over at least a 15 year period, fixed in magnetic latitude and longitude. The size and shape of this "Great Cold Spot" vary significantly with time, strongly suggesting that it is produced by an aurorally generated weather system: the first direct evidence of a long-term thermospheric vortex in the solar system. We discuss the implications of this spot, comparing it with short-term temperature and density variations at Earth.

4.
J Geophys Res Planets ; 121(9): 1814-1826, 2016 Sep.
Article in English | MEDLINE | ID: mdl-29629249

ABSTRACT

We use observations from the Imaging Science Subsystem on Cassini to create maps of Saturn's Northern Hemisphere (NH) from 2008 to 2015, a time period including a seasonal transition (i.e., Spring Equinox in 2009) and the 2010 giant storm. The processed maps are used to investigate vortices in the NH during the period of 2008-2015. All recorded vortices have diameters (east-west) smaller than 6000 km except for the largest vortex that developed from the 2010 giant storm. The largest vortex decreased its diameter from ~11000 km in 2011 to ~5000 km in 2015, and its average diameter is ~6500 km during the period of 2011-2015. The largest vortex lasts at least 4 years, which is much longer than the lifetimes of most vortices (less than 1 year). The largest vortex drifts to north, which can be explained by the beta drift effect. The number of vortices displays varying behaviors in the meridional direction, in which the 2010 giant storm significantly affects the generation and development of vortices in the middle latitudes (25-45°N). In the higher latitudes (45-90°N), the number of vortices also displays strong temporal variations. The solar flux and the internal heat do not directly contribute to the vortex activities, leaving the temporal variations of vortices in the higher latitudes (45-90°N) unexplained.

5.
Nat Commun ; 6: 10231, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26694318

ABSTRACT

Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

6.
Sci Rep ; 3: 2410, 2013.
Article in English | MEDLINE | ID: mdl-23934437

ABSTRACT

Here we report the combined spacecraft observations of Saturn acquired over one Saturnian year (~29.5 Earth years), from the Voyager encounters (1980-81) to the new Cassini reconnaissance (2009-10). The combined observations reveal a strong temporal increase of tropic temperature (~10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (~a few Kelvins). We also provide the first estimate of the zonal winds at 750 mbar, which is close to the zonal winds at 2000 mbar. The quasi-consistency of zonal winds between these two levels provides observational support to a numerical suggestion inferring that the zonal winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of zonal winds decreases its magnitude with depth, implying that the relatively deep zonal winds are stable with time.


Subject(s)
Satellite Imagery/methods , Saturn , Seasons , Spacecraft , Weather
7.
Opt Lett ; 36(11): 2083-5, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21633456

ABSTRACT

We report on a way of building bidirectional surface reflectivity into the Markov chain formalism for polarized radiative transfer through a vertically inhomogeneous atmosphere. Numerical results are compared to those obtained by the Monte Carlo method, showing the accuracy of the Markov chain method when 90 streams are used to compute the radiation from a Rayleigh-plus-aerosol atmosphere that overlies a surface with a bidirectional reflection function consisting of both depolarizing and polarizing parts.

8.
Opt Express ; 19(2): 946-67, 2011 Jan 17.
Article in English | MEDLINE | ID: mdl-21263634

ABSTRACT

Building on the Markov chain formalism for scalar (intensity only) radiative transfer, this paper formulates the solution to polarized diffuse reflection from and transmission through a vertically inhomogeneous atmosphere. For verification, numerical results are compared to those obtained by the Monte Carlo method, showing deviations less than 1% when 90 streams are used to compute the radiation from two types of atmospheres, pure Rayleigh and Rayleigh plus aerosol, when they are divided into sublayers of optical thicknesses of less than 0.03.


Subject(s)
Atmosphere , Models, Statistical , Refractometry/methods , Scattering, Radiation , Computer Simulation , Light , Markov Chains , Monte Carlo Method
9.
Science ; 327(5964): 435-9, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20007863

ABSTRACT

Since 2004, Saturn's moon Iapetus has been observed repeatedly with the Imaging Science Subsystem of the Cassini spacecraft. The images show numerous impact craters down to the resolution limit of approximately 10 meters per pixel. Small, bright craters within the dark hemisphere indicate a dark blanket thickness on the order of meters or less. Dark, equator-facing and bright, poleward-facing crater walls suggest temperature-driven water-ice sublimation as the process responsible for local albedo patterns. Imaging data also reveal a global color dichotomy, wherein both dark and bright materials on the leading side have a substantially redder color than the respective trailing-side materials. This global pattern indicates an exogenic origin for the redder leading-side parts and suggests that the global color dichotomy initiated the thermal formation of the global albedo dichotomy.


Subject(s)
Ice , Saturn , Water , Color , Extraterrestrial Environment , Spacecraft , Temperature
10.
Science ; 319(5871): 1801, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18369142

ABSTRACT

The camera onboard the Cassini spacecraft has allowed us to observe many of Saturn's cloud features. We present observations of Saturn's south polar vortex (SPV) showing that it shares some properties with terrestrial hurricanes: cyclonic circulation, warm central region (the eye) surrounded by a ring of high clouds (the eye wall), and convective clouds outside the eye. The polar location and the absence of an ocean are major differences. It also shares properties with the polar vortices on Venus, such as polar location, cyclonic circulation, warm center, and long lifetime, but the Venus vortices have cold collars and are not associated with convective clouds. The SPV's combination of properties is unique among vortices in the solar system.

11.
Science ; 308(5724): 978-82, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15890872

ABSTRACT

The Cassini Ultraviolet Imaging Spectrometer (UVIS) observed the extinction of photons from two stars by the atmosphere of Titan during the Titan flyby. Six species were identified and measured: methane, acetylene, ethylene, ethane, diacetylene, and hydrogen cyanide. The observations cover altitudes from 450 to 1600 kilometers above the surface. A mesopause is inferred from extraction of the temperature structure of methane, located at 615 km with a temperature minimum of 114 kelvin. The asymptotic kinetic temperature at the top of the atmosphere determined from this experiment is 151 kelvin. The higher order hydrocarbons and hydrogen cyanide peak sharply in abundance and are undetectable below altitudes ranging from 750 to 600 km, leaving methane as the only identifiable carbonaceous molecule in this experiment below 600 km.


Subject(s)
Hydrocarbons, Acyclic , Hydrogen Cyanide , Saturn , Spacecraft , Acetylene , Atmosphere , Ethane , Ethylenes , Extraterrestrial Environment , Mathematics , Methane , Spectrum Analysis , Temperature
12.
Science ; 307(5713): 1251-5, 2005 Feb 25.
Article in English | MEDLINE | ID: mdl-15604361

ABSTRACT

Neutral oxygen in the saturnian system shows variability, and the total number of oxygen atoms peaks at 4 x 10(34). Saturn's aurora brightens in response to solar-wind forcing, and the auroral spectrum resembles Jupiter's. Phoebe's surface shows variable water-ice content, and the data indicate it originated in the outer solar system. Saturn's rings also show variable water abundance, with the purest ice in the outermost A ring. This radial variation is consistent with initially pure water ice bombarded by meteors, but smaller radial structures may indicate collisional transport and recent renewal events in the past 10(7) to 10(8) years.


Subject(s)
Hydrogen , Ice , Oxygen , Saturn , Extraterrestrial Environment , Spacecraft , Spectrum Analysis , Ultraviolet Rays , Water
13.
Science ; 299(5612): 1541-7, 2003 Mar 07.
Article in English | MEDLINE | ID: mdl-12624258

ABSTRACT

The Cassini Imaging Science Subsystem acquired about 26,000 images of the Jupiter system as the spacecraft encountered the giant planet en route to Saturn. We report findings on Jupiter's zonal winds, convective storms, low-latitude upper troposphere, polar stratosphere, and northern aurora. We also describe previously unseen emissions arising from Io and Europa in eclipse, a giant volcanic plume over Io's north pole, disk-resolved images of the satellite Himalia, circumstantial evidence for a causal relation between the satellites Metis and Adrastea and the main jovian ring, and information on the nature of the ring particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...