Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 406(6799): 959-64, 2000 Aug 31.
Article in English | MEDLINE | ID: mdl-10984043

ABSTRACT

Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P. aeruginosa strain PAO1. At 6.3 million base pairs, this is the largest bacterial genome sequenced, and the sequence provides insights into the basis of the versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger genome size and environmental adaptability, P. aeruginosa contains the highest proportion of regulatory genes observed for a bacterial genome and a large number of genes involved in the catabolism, transport and efflux of organic compounds as well as four potential chemotaxis systems. We propose that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.


Subject(s)
Genome, Bacterial , Pseudomonas aeruginosa/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Computational Biology , DNA, Bacterial , Drug Resistance, Microbial , Gene Expression Regulation, Bacterial , Humans , Molecular Sequence Data , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/physiology , Sequence Analysis, DNA , Species Specificity
2.
Antimicrob Agents Chemother ; 43(12): 2975-83, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10582892

ABSTRACT

Pseudomonas aeruginosa can employ many distinct mechanisms of resistance to aminoglycoside antibiotics; however, in cystic fibrosis patients, more than 90% of aminoglycoside-resistant P. aeruginosa isolates are of the impermeability phenotype. The precise molecular mechanisms that produce aminoglycoside impermeability-type resistance are yet to be elucidated. A subtractive hybridization technique was used to reveal gene expression differences between PAO1 and isogenic, spontaneous aminoglycoside-resistant mutants of the impermeability phenotype. Among the many genes found to be up-regulated in these laboratory mutants were the amrAB genes encoding a recently discovered efflux system. The amrAB genes appear to be the same as the recently described mexXY genes; however, the resistance profile that we see in P. aeruginosa is very different from that described for Escherichia coli with mexXY. Direct evidence for AmrAB involvement in aminoglycoside resistance was provided by the deletion of amrB in the PAO1-derived laboratory mutant, which resulted in the restoration of aminoglycoside sensitivity to a level nearly identical to that of the parent strain. Furthermore, transcription of the amrAB genes was shown to be up-regulated in P. aeruginosa clinical isolates displaying the impermeability phenotype compared to a genotypically matched sensitive clinical isolate from the same patient. This suggests the possibility that AmrAB-mediated efflux is a clinically relevant mechanism of aminoglycoside resistance. Although it is unlikely that hyperexpression of AmrAB is the sole mechanism conferring the impermeability phenotype, we believe that the Amr efflux system can contribute to a complex interaction of molecular events resulting in the aminoglycoside impermeability-type resistance phenotype.


Subject(s)
Anti-Bacterial Agents/metabolism , Pseudomonas aeruginosa/metabolism , Anti-Bacterial Agents/pharmacology , Blotting, Southern , Chromosome Mapping , Culture Media , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Drug Resistance, Microbial , Electrophoresis, Polyacrylamide Gel , Humans , Microbial Sensitivity Tests , Mutation/genetics , Permeability , Phenotype , Plasmids/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tobramycin/pharmacology , Transcriptional Activation/physiology , Up-Regulation/drug effects , Up-Regulation/genetics
3.
Mol Microbiol ; 30(2): 393-404, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9791183

ABSTRACT

The Gram-positive bacterium Staphylococcus aureus infects diverse tissues and causes a wide spectrum of diseases, suggesting that it possesses a repertoire of distinct molecular mechanisms promoting bacterial survival in disparate in vivo environments. Signature-tag transposon mutagenesis screening of a 1520-member library identified numerous S. aureus genetic loci affecting growth and survival in four complementary animal infection models including mouse abscess, bacteraemia and wound and rabbit endocarditis. Of a total of 237 in vivo attenuated mutants identified by the murine models, less than 10% showed attenuation in all three models, emphasizing the advantage of screening in diverse disease environments. The largest gene class identified by these analyses encoded peptide and amino acid transporters, some of which were important for S. aureus survival in all animal infection models tested. The identification of staphylococcal loci affecting growth, persistence and virulence in multiple tissue environments provides insight into the complexities of human infection and on the molecular mechanisms that could be targeted by new antibacterial therapies.


Subject(s)
Bacterial Proteins , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Bacteremia/microbiology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Division/genetics , Disease Models, Animal , Endocarditis/microbiology , Gene Library , Mice , Mice, Inbred BALB C , Mice, Inbred Strains , Molecular Sequence Data , Mutagenesis , Mutation , Rabbits , Staphylococcus aureus/growth & development , Virulence , Wounds and Injuries/microbiology
4.
Infect Immun ; 66(2): 567-72, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9453610

ABSTRACT

Staphylococcus aureus is an important pathogen of humans and other animals, causing bacteremia, abscesses, endocarditis, and other infectious syndromes. A signature-tagged mutagenesis (STM) system was adapted for use in studying the genes required for in vivo survival of S. aureus. An STM library was ultimately created in S. aureus RN6390, with Tn917 being used to create the transposon mutations. Pools of S. aureus RN6390 mutants were screened in mouse abscess, bacteremia, and wound infection models for growth attenuation after in vivo passage. One of the mutants that was identified displayed marked attenuation following large-pool screening in all three animal models, which was confirmed in bacteremia and endocarditis models of infection with a smaller pool of mutants. Sequence analysis of the entire open reading frame showed a 99% identity to the high-affinity proline permease (putP) gene characterized in another strain of S. aureus. In wound and murine abscess infection models, the putP mutant was approximately 10-fold more attenuated than was wild-type strain RN6390. Another S. aureus strain transduced with the putP mutation also displayed an attenuated phenotype after passage in the wound model. A [3H]proline uptake assay showed that less proline was specifically transported into the putP mutant than into strain RN6390. The reduced viability of the bacteria possessing the mutation in the S. aureus high-affinity proline permease suggests that proline scavenging by the bacteria is important for in vivo growth and proliferation and that analogs of proline may serve as potential antistaphylococcal therapeutic agents.


Subject(s)
Amino Acid Transport Systems, Neutral , Membrane Transport Proteins/physiology , Staphylococcus aureus/physiology , Animals , DNA Transposable Elements , Mice , Mice, Inbred C57BL , Mutation , Proline/metabolism , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...