Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 8891, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25772348

ABSTRACT

A new phenomenon of structural reorganization is discovered and characterized for a gold-carbon system by in-situ atomic-resolution imaging at temperatures up to 1300 K. Here, a graphene sheet serves in three ways, as a quasi transparent substrate for aberration-corrected high-resolution transmission electron microscopy, as an in-situ heater, and as carbon supplier. The sheet has been decorated with gold nanoislands beforehand. During electron irradiation at 80 kV and at elevated temperatures, the accumulation of gold atoms has been observed on defective graphene sites or edges as well as at the facets of gold nanocrystals. Both resulted in clustering, forming unusual crystalline structures. Their lattice parameters and surface termination differ significantly from standard gold nanocrystals. The experimental data, supported by electron energy loss spectroscopy and density-functional theory calculations, suggests that isolated gold and carbon atoms form - under conditions of heat and electron irradiation - a novel type of compound crystal, Au-C in zincblende structure. The novel material is metastable, but surprisingly robust, even under annealing condition.

2.
Nano Lett ; 11(12): 5123-7, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22022781

ABSTRACT

We describe new phenomena of structural reorganization of carbon adsorbates as revealed by in situ atomic-resolution transmission electron microscopy (TEM) performed on specimens at extreme temperatures. In our investigations, a graphene sheet serves as both a quasi-transparent substrate for TEM and as an in situ heater. The melting of gold nanoislands deposited on the substrate surface is used to evaluate the local temperature profile. At annealing temperatures around 1000 K, we observe the transformation of physisorbed hydrocarbon adsorbates into amorphous carbon monolayers and the initiation of crystallization. At temperatures exceeding 2000 K the transformation terminates in the formation of a completely polycrystalline graphene state. The resulting layers are bounded by free edges primarily in the armchair configuration.

SELECTION OF CITATIONS
SEARCH DETAIL
...