Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 41(12): 1801-1809, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36973556

ABSTRACT

Transcription factor binding across the genome is regulated by DNA sequence and chromatin features. However, it is not yet possible to quantify the impact of chromatin context on transcription factor binding affinities. Here, we report a method called binding affinities to native chromatin by sequencing (BANC-seq) to determine absolute apparent binding affinities of transcription factors to native DNA across the genome. In BANC-seq, a concentration range of a tagged transcription factor is added to isolated nuclei. Concentration-dependent binding is then measured per sample to quantify apparent binding affinities across the genome. BANC-seq adds a quantitative dimension to transcription factor biology, which enables stratification of genomic targets based on transcription factor concentration and prediction of transcription factor binding sites under non-physiological conditions, such as disease-associated overexpression of (onco)genes. Notably, whereas consensus DNA binding motifs for transcription factors are important to establish high-affinity binding sites, these motifs are not always strictly required to generate nanomolar-affinity interactions in the genome.


Subject(s)
Chromatin , Transcription Factors , Chromatin/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Binding , DNA/genetics , DNA/metabolism , Gene Expression Regulation , Binding Sites/genetics , Sequence Analysis, DNA
2.
iScience ; 24(12): 103444, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34877501

ABSTRACT

Retinoic acid (RA) signaling is an important and conserved pathway that regulates cellular proliferation and differentiation. Furthermore, perturbed RA signaling is implicated in cancer initiation and progression. However, the mechanisms by which RA signaling contributes to homeostasis, malignant transformation, and disease progression in the intestine remain incompletely understood. Here, we report, in agreement with previous findings, that activation of the Retinoic Acid Receptor and the Retinoid X Receptor results in enhanced transcription of enterocyte-specific genes in mouse small intestinal organoids. Conversely, inhibition of this pathway results in reduced expression of genes associated with the absorptive lineage. Strikingly, this latter effect is conserved in a human organoid model for colorectal cancer (CRC) progression. We further show that RXR motif accessibility depends on progression state of CRC organoids. Finally, we show that reduced RXR target gene expression correlates with worse CRC prognosis, implying RA signaling as a putative therapeutic target in CRC.

3.
Science ; 370(6519): 935-941, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33122427

ABSTRACT

Loss-of-function (LOF) screens provide a powerful approach to identify regulators in biological processes. Pioneered in laboratory animals, LOF screens of human genes are currently restricted to two-dimensional cell cultures, which hinders the testing of gene functions requiring tissue context. Here, we present CRISPR-lineage tracing at cellular resolution in heterogeneous tissue (CRISPR-LICHT), which enables parallel LOF studies in human cerebral organoid tissue. We used CRISPR-LICHT to test 173 microcephaly candidate genes, revealing 25 to be involved in known and uncharacterized microcephaly-associated pathways. We characterized IER3IP1, which regulates the endoplasmic reticulum (ER) function and extracellular matrix protein secretion crucial for tissue integrity, the dysregulation of which results in microcephaly. Our human tissue screening technology identifies microcephaly genes and mechanisms involved in brain-size control.


Subject(s)
Brain/growth & development , Carrier Proteins/physiology , Endoplasmic Reticulum/metabolism , Extracellular Matrix Proteins/metabolism , Genetic Testing/methods , Membrane Proteins/physiology , Microcephaly/genetics , Brain/metabolism , CRISPR-Cas Systems , Carrier Proteins/genetics , Cell Line , Cell Lineage , Gene Knockout Techniques , Humans , Membrane Proteins/genetics , Organ Size , Organoids/growth & development , Organoids/metabolism
4.
Stem Cell Res ; 33: 135-145, 2018 12.
Article in English | MEDLINE | ID: mdl-30352361

ABSTRACT

The ground state of pluripotency is defined as a minimal unrestricted epigenetic state as present in the Inner Cell Mass. Mouse embryonic stem cells (ESCs) grown in a defined serum-free medium with two kinase inhibitors ("2i ESCs") have been postulated to reflect ground-state pluripotency, whereas ESCs grown in the presence of serum ("serum ESCs") share more similarities with post-implantation epiblast cells. Pluripotency results from an intricate interplay between cytoplasmic, nuclear and chromatin-associated proteins. Here, we perform quantitative subcellular proteomics to gain insight in the molecular mechanisms sustaining the pluripotent states reflected by 2i and serum ESCs. We describe a full SILAC workflow and quality controls for proteomic comparison of 2i and serum ESCs, allowing subcellular proteomics of the cytoplasm, nucleoplasm and chromatin. The obtained quantitative information revealed increased levels of naïve pluripotency factors on the chromatin of 2i ESCs. Surprisingly, the cytoplasmic proteome suggests that 2i and serum ESCs utilize distinct metabolic programs, which include upregulation of free radical buffering by the glutathione pathway in 2i ESCs. Through induction of intracellular radicals, we show that the altered metabolic environment renders 2i ESCs less sensitive to oxidative stress. Altogether, this work provides novel insights into the proteomic landscape underlying ground state pluripotency.


Subject(s)
Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Proteomics/methods , Animals , Cell Differentiation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...