Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 25(5): 5618-5625, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28380823

ABSTRACT

We demonstrate a compact and versatile laser system for stimulated Raman spectroscopy (SRS). The system is based on a tunable continuous wave (CW) probe laser combined with a home-built semi-monolithic nanosecond pulsed pump Nd:YVO4 laser at 1064 nm. The CW operation of the probe laser offers narrow linewidth, low noise and the advantage that temporal synchronization with the pump is not required. The laser system enables polarization-sensitive stimulated Raman spectroscopy (PS-SRS) with fast high resolution measurement of the depolarization ratio by simultaneous detection of Raman scattered light in orthogonal polarizations, thus providing information about the symmetry of the Raman-active vibrational modes. Measurements of the depolarization ratios of the carbon-hydrogen (CH) stretching modes in two different polymer samples in the spectral range of 2825-3025 cm-1 were performed. Raman spectra are obtained at a sweep rate of 20 nm/s (84 cm-1/s) with a resolution of 0.65 cm-1. A normalization method is introduced for the direct comparison of the simultaneously acquired orthogonal polarized Raman spectra.

2.
Opt Express ; 25(3): 2259-2269, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-29519074

ABSTRACT

We demonstrate a significant improvement in the performance of a fiber-based frequency comb when a GPS-disciplined Rb clock is replaced with an acetylene-stabilized laser as the frequency reference. We have developed a compact, maintenance-free acetylene-stabilized fiber laser with a sub-kHz short-term linewidth and an Allan deviation below 3×10-13 for integration times above 1 s. Switching the comb reference from the Rb clock to the acetylene-stabilized laser improves both comb tooth linewidth and Allan deviation by about two orders of magnitude. Furthermore, long-term measurements of the acetylene-stabilized laser frequency with reference to the GPS-disciplined clock indicate a potential relative frequency uncertainty of 2 × 10-12.

3.
Appl Opt ; 55(29): 8266-8270, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27828072

ABSTRACT

An all-optical detection method for the detection of acoustic pressure waves is demonstrated. The detection system is based on a stripped (bare) single-mode fiber. The fiber vibrates as a standard cantilever and the optical output from the fiber is imaged to a displacement-sensitive optical detector. The absence of a conventional microphone makes the demonstrated system less susceptible to the effects that a hazardous environment might have on the sensor. The sensor is also useful for measurements in high-temperature (above 200°C) environments where conventional microphones will not operate. The proof-of-concept of the all-optical detection method is demonstrated by detecting sound waves generated by the photoacoustic effect of NO2 excited by a 455 nm LED, where a detection sensitivity of approximately 50 ppm was achieved.

4.
Opt Express ; 24(5): 4872-4880, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092314

ABSTRACT

We demonstrate a compact fibre-based laser system at 2.05 microns stabilized to a CO2 transition using frequency modulation spectroscopy of a gas-filled hollow-core fibre. The laser exhibits an absolute frequency accuracy of 5 MHz, a frequency stability noise floor of better than 7 kHz or 5 × 10-11 and is tunable within ±200 MHz from the molecular resonance frequency while retaining roughly this stability and accuracy.

5.
Opt Express ; 23(12): 16320-8, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193604

ABSTRACT

We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (< 50 kHz) 1064 nm continuous-wave (CW) fiber laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ∼ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10(-4) cm(-1). The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths.

6.
Phys Rev Lett ; 114(9): 093002, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793810

ABSTRACT

As an alternative to state-of-the-art laser frequency stabilization using ultrastable cavities, it has been proposed to exploit the nonlinear effects from coupling of atoms with a narrow transition to an optical cavity. Here, we have constructed such a system and observed nonlinear phase shifts of a narrow optical line by a strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multiphoton scattering events (Dopplerons) that affect the cavity field transmission and phase. By varying the number of atoms and the intracavity power, we systematically study this nonlinear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple system opens new possibilities for alternative routes to laser stabilization at the sub-100 mHz level and superradiant laser sources involving narrow-line atoms. The understanding of relevant motional effects obtained here has direct implications for other atomic clocks when used in relation to ultranarrow clock transitions.

7.
Opt Lett ; 32(13): 1812-4, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17603578

ABSTRACT

We report what we believe to be the first accuracy evaluation of an optical lattice clock based on the S01-->P03 transition of an alkaline earth boson, namely, Sr88 atoms. This transition has been enabled by using a static coupling magnetic field. The clock frequency is determined to be 429228066418009(32)Hz. The isotopic shift between Sr87 and Sr88 is 62188135Hz with fractional uncertainty 5x10(-7). We discuss the necessary conditions to reach a clock accuracy of 10(-17) or less by using this scheme.

SELECTION OF CITATIONS
SEARCH DETAIL
...