Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Langmuir ; 36(21): 5872-5879, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32316735

ABSTRACT

We use Faraday waves to measure interfacial tension σ between two immiscible fluids, with an interest in (ultra)low values of σ. The waves are excited by vertically oscillating the container in which the fluids reside. Using linear stability theory, we map out the accessible range of interfacial tensions. The smallest value (σmin ≈ 5 × 10-4 N/m) is limited by the joint influence of gravity and viscous dissipation. A further limitation is posed by the greatest accelerations that can be realized in a laboratory. We perform experiments on a water-dodecane interface with an increasing concentration of a surfactant in the water layer that decreases the interfacial tension into the ultralow domain [σ = [Formula: see text](10-6 N/m)]. Surprisingly, the smallest measured wavelength is larger by a factor of 2 than that predicted for vanishing σ. We hypothesize the effect of transport of the surfactant in the fluid flow associated with the waves.

2.
PLoS One ; 14(5): e0215674, 2019.
Article in English | MEDLINE | ID: mdl-31071119

ABSTRACT

To analyze on-water rowing performance, a valid determination of the power loss due to the generation of propulsion is required. This power los can be calculated as the dot product of the net water force vector ([Formula: see text]) and the time derivative of the position vector of the point at the blade where [Formula: see text] is applied ([Formula: see text]). In this article we presented a method that allows for accurate determination of both parameters using a closed system of three rotational equations of motion for three different locations at the oar. Additionally, the output of the method has been validated. An oar was instrumented with three pairs of strain gauges measuring local strain. Force was applied at different locations of the blade, while the oar was fixed at the oarlock and the end of the handle. Using a force transducer and kinematic registration, the force vector at the blade and the deflection of the oar were measured. These data were considered to be accurate and used to calibrate the measured strain for bending moments, the deflection of the oar and the angle of the blade relative to its unloaded position. Additionally, those data were used to validate the output values of the presented method plus the associated instantaneous power output. Good correspondence was found between the estimated perpendicular blade force and its reference (ICC = .999), while the parallel blade force could not be obtained (ICC = .000). The position of the PoA relative to the blade could be accurately obtained when the perpendicular force was ≥ 5.3 N (ICC = .927). Instantaneous power output values associated with the perpendicular force could be obtained with reasonable accuracy (ICC = .747). These results suggest that the power loss due to the perpendicular water force component can be accurately obtained, while an additional method is required to obtain the power losses due to the parallel force.


Subject(s)
Mechanical Phenomena , Sports Equipment , Water Sports , Calibration , Materials Testing , Stress, Mechanical
3.
J Biomech ; 63: 67-73, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28823502

ABSTRACT

The effect of finger spread on overall drag on a swimmer's hand is relatively small, but could be relevant for elite swimmers. There are many sensitivities in measuring this effect. A comparison between numerical simulations, experiments and theory is urgently required to observe whether the effect is significant. In this study, the beneficial effect of a small finger spread in swimming is confirmed using three different but complementary methods. For the first time numerical simulations and laboratory experiments are conducted on the exact same 3D model of the hand with attached forearm. The virtual version of the hand with forearm was implemented in a numerical code by means of an immersed boundary method and the 3D printed physical version was studied in a wind tunnel experiment. An enhancement of the drag coefficient of 2% and 5% compared to the case with closed fingers was found for the numerical simulation and experiment, respectively. A 5% and 8% favorable effect on the (dimensionless) force moment at an optimal finger spreading of 10° was found, which indicates that the difference is more outspoken in the force moment. Moreover, an analytical model is proposed, using scaling arguments similar to the Betz actuator disk model, to explain the drag coefficient as a function of finger spacing.


Subject(s)
Hand/physiology , Swimming/physiology , Biomechanical Phenomena , Computer Simulation , Forearm/physiology , Humans , Models, Biological , Rheology/methods
4.
Phys Rev E ; 95(5-1): 053113, 2017 May.
Article in English | MEDLINE | ID: mdl-28618524

ABSTRACT

The effects of strongly varying fluid properties, beyond the validity range of the so-called Boussinesq approximation, were experimentally studied in Rayleigh-Bénard (RB) convection. Two experiments were conducted in the same cubical RB convection cell at similar Rayleigh and Prandtl numbers. In one experiment water was used as working fluid and the imposed temperature difference between the top and bottom plates of the cell was such to ensure non-Boussinesq conditions. In the other experiment, taken as a reference for Boussinesq conditions, methanol was used as working fluid, allowing a smaller temperature difference between the plates. In both experiments the instantaneous and time-averaged flow fields were determined experimentally in a vertical cross section of the cell by using particle image velocimetry. Results show a non-Boussinesq effect that manifests itself as an increase of the time-averaged horizontal velocity component close to the bottom wall of the cell and as a global top-bottom asymmetry of the velocity field. This is an experimental study of the whole velocity field of RB convection at non-Boussinesq conditions.

5.
Article in English | MEDLINE | ID: mdl-26651784

ABSTRACT

We present a collision model for particle-particle and particle-wall interactions in interface-resolved simulations of particle-laden flows. Three types of interparticle interactions are taken into account: (1) long- and (2) short-range hydrodynamic interactions, and (3) solid-solid contact. Long-range interactions are incorporated through an efficient and second-order-accurate immersed boundary method (IBM). Short-range interactions are also partly reproduced by the IBM. However, since the IBM uses a fixed grid, a lubrication model is needed for an interparticle gap width smaller than the grid spacing. The lubrication model is based on asymptotic expansions of analytical solutions for canonical lubrication interactions between spheres in the Stokes regime. Roughness effects are incorporated by making the lubrication correction independent of the gap width for gap widths smaller than ∼1% of the particle radius. This correction is applied until the particles reach solid-solid contact. To model solid-solid contact we use a variant of a linear soft-sphere collision model capable of stretching the collision time. This choice is computationally attractive because it allows us to reduce the number of time steps required for integrating the collision force accurately and is physically realistic, provided that the prescribed collision time is much smaller than the characteristic time scale of particle motion. We verified the numerical implementation of our collision model and validated it against several benchmark cases for immersed head-on particle-wall and particle-particle collisions, and oblique particle-wall collisions. The results show good agreement with experimental data.

6.
PLoS One ; 9(5): e96856, 2014.
Article in English | MEDLINE | ID: mdl-24823933

ABSTRACT

Since fluid dynamics plays a critical role in vascular remodeling, quantification of the hemodynamics is crucial to gain more insight into this complex process. Better understanding of vascular development can improve prediction of the process, and may eventually even be used to influence the vascular structure. In this study, a methodology to quantify hemodynamics and network structure of developing vascular networks is described. The hemodynamic parameters and topology are derived from detailed local blood flow velocities, obtained by in vivo micro-PIV measurements. The use of such detailed flow measurements is shown to be essential, as blood vessels with a similar diameter can have a large variation in flow rate. Measurements are performed in the yolk sacs of seven chicken embryos at two developmental stages between HH 13+ and 17+. A large range of flow velocities (1 µm/s to 1 mm/s) is measured in blood vessels with diameters in the range of 25-500 µm. The quality of the data sets is investigated by verifying the flow balances in the branching points. This shows that the quality of the data sets of the seven embryos is comparable for all stages observed, and the data is suitable for further analysis with known accuracy. When comparing two subsequently characterized networks of the same embryo, vascular remodeling is observed in all seven networks. However, the character of remodeling in the seven embryos differs and can be non-intuitive, which confirms the necessity of quantification. To illustrate the potential of the data, we present a preliminary quantitative study of key network topology parameters and we compare these with theoretical design rules.


Subject(s)
Blood Flow Velocity/physiology , Hemodynamics/physiology , Regional Blood Flow/physiology , Animals , Chick Embryo
7.
PLoS One ; 7(9): e45247, 2012.
Article in English | MEDLINE | ID: mdl-23028878

ABSTRACT

Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.


Subject(s)
Blood Flow Velocity/physiology , Erythrocytes/physiology , Rheology/methods , Rheology/standards , Animals , Chick Embryo , Molecular Probes , Rheology/instrumentation
8.
Lab Chip ; 11(10): 1815-24, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21491052

ABSTRACT

The zebrafish embryo is a small, cheap, whole-animal model which may replace rodents in some areas of research. Unfortunately, zebrafish embryos are commonly cultured in microtitre plates using cell-culture protocols with static buffer replacement. Such protocols are highly invasive, consume large quantities of reagents and do not readily permit high-quality imaging. Zebrafish and rodent embryos have previously been cultured in static microfluidic drops, and zebrafish embryos have also been raised in a prototype polydimethylsiloxane setup in a Petri dish. Other than this, no animal embryo has ever been shown to undergo embryonic development in a microfluidic flow-through system. We have developed and prototyped a specialized lab-on-a-chip made from bonded layers of borosilicate glass. We find that zebrafish embryos can develop in the chip for 5 days, with continuous buffer flow at pressures of 0.005-0.04 MPa. Phenotypic effects were seen, but these were scored subjectively as 'minor'. Survival rates of 100% could be reached with buffer flows of 2 µL per well per min. High-quality imaging was possible. An acute ethanol exposure test in the chip replicated the same assay performed in microtitre plates. More than 100 embryos could be cultured in an area, excluding infrastructure, smaller than a credit card. We discuss how biochip technology, coupled with zebrafish larvae, could allow biological research to be conducted in massive, parallel experiments, at high speed and low cost.


Subject(s)
Embryonic Development , Microfluidic Analytical Techniques/instrumentation , Zebrafish/embryology , Animals , Ethanol/toxicity , Female , Melanocytes/cytology , Microfluidic Analytical Techniques/methods , Phenotype
9.
Philos Trans A Math Phys Eng Sci ; 369(1937): 723-37, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21242130

ABSTRACT

The turbulent/non-turbulent interface of a jet is characterized by sharp jumps ('discontinuities') in the conditional flow statistics relative to the interface. Experiments were carried out to measure the conditional flow statistics for a non-isothermal jet, i.e. a cooled jet. These experiments are complementary to previous experiments on an isothermal Re=2000 jet, where, in the present experiments on a non-isothermal jet, the thermal diffusivity is intermediate to the diffusivity of momentum and the diffusivity of mass. The experimental method is a combined laser-induced fluorescence/particle image velocimetry method, where a temperature-sensitive fluorescent dye (rhodamine 6G) is used to measure the instantaneous temperature fluctuations. The results show that the cooled jet can be considered to behave like a self-similar jet without any significant buoyancy effects. The detection of the interface is based on the instantaneous temperature, and provides a reliable means to detect the interface. Conditional flow statistics reveal the superlayer jump in the conditional vorticity and in the temperature.

10.
Anal Chem ; 82(10): 4027-35, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20423105

ABSTRACT

This paper describes a new way to perform hydrodynamic chromatography (HDC) for the size separation of particles based on a unique recirculating flow pattern. Pressure-driven (PF) and electro-osmotic flows (EOF) are opposed in narrow glass microchannels that expand at both ends. The resulting bidirectional flow turns into recirculating flow because of nonuniform microchannel dimensions. This hydrodynamic effect, combined with the electrokinetic migration of the particles themselves, results in a trapping phenomenon, which we have termed flow-induced electrokinetic trapping (FIET). In this paper, we exploit recirculating flow and FIET to perform a size-based separation of samples of microparticles trapped in a short separation channel using a HDC approach. Because these particles have the same charge (same zeta potential), they exhibit the same electrophoretic mobility, but they can be separated according to size in the recirculating flow. While trapped, particles have a net drift velocity toward the low-pressure end of the channel. When, because of a change in the externally applied PF or electric field, the sign of the net drift velocity reverses, particles can escape the separation channel in the direction of EOF. Larger particles exhibit a larger net drift velocity opposing EOF, so that the smaller particles escape the separation channel first. In the example presented here, a sample plug containing 2.33 and 2.82 microm polymer particles was introduced from the inlet into a 3-mm-long separation channel and trapped. Through tuning of the electric field with respect to the applied PF, the particles could be separated, with the advantage that larger particles remained trapped. The separation of particles with less than 500 nm differences in diameter was performed with an analytical resolution comparable to that of baseline separation in chromatography. When the sample was not trapped in the separation channel but located further downstream, separations could be carried out continuously rather than in batch. Smaller particles could successfully pass through the separation channel, and particles were separated by size. One of the main advantages of exploiting FIET for HDC is that this method can be applied in quite short (a few millimeters) channel geometries. This is in great contrast to examples published to date for the separation of nanoparticles in much longer micro- and nanochannels.


Subject(s)
Chromatography/methods , Particle Size , Molecular Dynamics Simulation
11.
Lab Chip ; 9(17): 2551-67, 2009 Sep 07.
Article in English | MEDLINE | ID: mdl-19680579

ABSTRACT

In this review we discuss the state of the art of the optical whole-field velocity measurement technique micro-scale Particle Image Velocimetry (microPIV). microPIV is a useful tool for fundamental research of microfluidics as well as for the detailed characterization and optimization of microfluidic applications in life science, lab-on-a-chip, biomedical research, micro chemical engineering, analytical chemistry and other related fields of research. An in depth description of the microPIV method is presented and compared to other flow visualization and measurement methods. An overview of the most relevant applications is given on the topics of near-wall flow, electrokinetic flow, biological flow, mixing, two-phase flow, turbulence transition and complex fluid dynamic problems. Current trends and applications are critically reviewed. Guidelines for the implementation and application are also discussed.

12.
Lab Chip ; 9(10): 1403-11, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19417907

ABSTRACT

A lab-on-a-chip application for the investigation of biochemical and mechanical response of individual endothelial cells to different fluid dynamical conditions is presented. A microfluidic flow chamber design with a tapered geometry that creates a pre-defined, homogeneous shear stress gradient on the cell layer is described and characterized. A non-intrusive, non-tactile measurement method based on micro-PIV is used for the determination of the topography and shear stress distribution over individual cells with subcellular resolution. The cellular gene expression is measured simultaneously with the shape and shear stress distribution of the cell. With this set-up the response of the cells on different pre-defined shear stress levels is investigated without the influence of variations in repetitive experiments. Results are shown on cultured endothelial cells related to the promoter activity of the shear-responsive transcription factor KLF2 driving the marker gene for green fluorescent protein.


Subject(s)
Cell Shape/physiology , Endothelial Cells/physiology , Microfluidic Analytical Techniques , Biochemical Phenomena , Endothelial Cells/cytology , Equipment Design , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Reproducibility of Results , Shear Strength , Stress, Mechanical
13.
Biomicrofluidics ; 3(4): 44111, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-20216973

ABSTRACT

Nanoparticle image velocimetry (nano-PIV), based on total internal reflection fluorescent microscopy, is very useful to investigate fluid flows within approximately 100 nm from a surface; but so far it has only been applied to flow over smooth surfaces. Here we show that it can also be applied to flow over a topologically structured surface, provided that the surface structures can be carefully configured not to disrupt the evanescent-wave illumination. We apply nano-PIV to quantify the flow velocity distribution over a polydimethylsiloxane surface, with a periodic gratinglike structure (with 215 nm height and 2 mum period) fabricated using our customized multilevel lithography method. The measured tracer displacement data are in good agreement with the computed theoretical values. These results demonstrate new possibilities to study the interactions between fluid flow and topologically structured surfaces.

14.
Philos Trans A Math Phys Eng Sci ; 367(1888): 489-507, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-18990660

ABSTRACT

From time-resolved stereoscopic particle image velocimetry measurements over the entire circular cross section of a pipe, a first-of-its-kind quasi-instantaneous three-dimensional velocity field of a turbulent puff at a low Reynolds number is reconstructed. At the trailing edge of the puff, where the laminar flow undergoes transition to turbulence, pairs of counterrotating streamwise vortices are observed that form the legs of large hairpin vortices. At the upstream end of the puff, a quasi-periodic regeneration of streamwise vortices takes place. Initially, the vortex structure resembles a travelling wave solution, but as the vortices propagate into the turbulent region of the puff, they continue to develop into strong hairpin vortices. These hairpin vortices extract so much energy from the mean flow that they cannot be sustained. This structure provides a possible explanation for the intermittent character of the puffs in pipe flow at low Reynolds numbers.

15.
Phys Rev Lett ; 101(21): 214501, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-19113412

ABSTRACT

The collapse of turbulence, observable in shear flows at low Reynolds numbers, raises the question if turbulence is generically of a transient nature or becomes sustained at some critical point. Recent data have led to conflicting views with the majority of studies supporting the model of turbulence turning into an attracting state. Here we present lifetime measurements of turbulence in pipe flow spanning 8 orders of magnitude in time, drastically extending all previous investigations. We show that no critical point exists in this regime and that in contrast to the prevailing view the turbulent state remains transient. To our knowledge this is the first observation of superexponential transients in turbulence, confirming a conjecture derived from low-dimensional systems.

16.
ScientificWorldJournal ; 8: 212-22, 2008 Feb 25.
Article in English | MEDLINE | ID: mdl-18661046

ABSTRACT

Cardiovascular development is directed or modulated by genetic and epigenetic factors. The latter include blood flow-related shear stress and blood pressure-related circumferential strain. This review focuses on shear stress and its effects on endothelial cells lining the inner surfaces of the heart and blood vessels. Flow characteristics of the embryonic blood, like velocity, viscosity and periodicity, are taken into account to describe the responses of endothelial cells to shear stress and the sensors for this friction force. The primary cilium, which is an integral part of the shear sensor, connects to the cytoskeletal microtubules and transmits information about the level and direction of blood flow into the endothelial cell. When the heart remodels from a more or less straight into a c-shaped tube the sharp curvature, in combination with the small vessel dimensions and high relative viscosity, directs the highest shear stress to the inner curvature of this pump. This proves to be an important epigenetic modulator of cardiac morphogenesis because when shear stress is experimentally altered inner curvature remodeling is affected which leads to the development of congenital cardiovascular anomalies. The best of both worlds, mechanics and biology, are used here to describe early cardiogenesis.


Subject(s)
Blood Circulation , Blood Pressure , Heart/embryology , Animals , Biomechanical Phenomena , Humans
17.
J Vasc Res ; 45(1): 54-68, 2008.
Article in English | MEDLINE | ID: mdl-17901707

ABSTRACT

BACKGROUND/AIMS: Ligating the right lateral vitelline vein of chicken embryos (venous clip) results in cardiovascular malformations. These abnormalities are similar to malformations observed in knockout mice studies of components of the endothelin-1 (ET-1)/endothelin-converting enzyme-1/endothelin-A receptor pathway. In previous studies we demonstrated that cardiac ET-1 expression is decreased 3 h after clipping, and ventricular diastolic filling is disturbed after 2 days. Therefore, we hypothesise that ET-1-related processes are involved in the development of functional and morphological cardiovascular defects after venous clip. METHODS: In this study, ET-1 and endothelin receptor antagonists (BQ-123, BQ-788 and PD145065) were infused into the HH18 embryonic circulation. Immediate haemodynamic effects on the embryonic heart and extra-embryonic vitelline veins were examined by Doppler and micro-particle image velocimetry. Ventricular diastolic filling characteristics were studied at HH24, followed by cardiovascular morphologic investigation (HH35). RESULTS: ET-1 and its receptor antagonists induced haemodynamic effects at HH18. At HH24, a reduced diastolic ventricular passive filling component was demonstrated, which was compensated by an increased active filling component. Thinner ventricular myocardium was shown in 42% of experimental embryos. CONCLUSION: We conclude that cardiovascular malformations after venous clipping arise from a combination of haemodynamic changes and altered gene expression patterns and levels, including those of the endothelin pathway.


Subject(s)
Cardiovascular Abnormalities/metabolism , Endothelin-1/metabolism , Heart/physiopathology , Hemodynamics , Myocardium/metabolism , Receptors, Endothelin/metabolism , Signal Transduction , Yolk Sac/blood supply , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Blood Flow Velocity , Cardiac Output , Cardiovascular Abnormalities/genetics , Cardiovascular Abnormalities/pathology , Cardiovascular Abnormalities/physiopathology , Cells, Cultured , Chick Embryo , Echocardiography , Endothelin Receptor Antagonists , Endothelin-1/genetics , Endothelin-Converting Enzymes , Gene Expression Regulation, Developmental , Heart/embryology , Heart Rate , Hemodynamics/drug effects , Laser-Doppler Flowmetry , Ligation , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Myocardium/pathology , Oligopeptides/pharmacology , Peptides, Cyclic/pharmacology , Piperidines/pharmacology , RNA, Messenger/metabolism , Receptors, Endothelin/genetics , Signal Transduction/drug effects , Time Factors , Veins/physiopathology , Veins/surgery , Ventricular Function
18.
Biomicrofluidics ; 2(2): 24103, 2008 May 06.
Article in English | MEDLINE | ID: mdl-19693406

ABSTRACT

In this paper, we demonstrate for the first time that insulative dielectrophoresis can induce size-dependent trajectories of DNA macromolecules. We experimentally use lambda (48.5 kbp) and T4GT7 (165.6 kbp) DNA molecules flowing continuously around a sharp corner inside fluidic channels with a depth of 0.4 mum. Numerical simulation of the electrokinetic force distribution inside the channels is in qualitative agreement with our experimentally observed trajectories. We discuss a possible physical mechanism for the DNA polarization and dielectrophoresis inside confining channels, based on the observed dielectrophoresis responses due to different DNA sizes and various electric fields applied between the inlet and the outlet. The proposed physical mechanism indicates that further extensive investigations, both theoretically and experimentally, would be very useful to better elucidate the forces involved at DNA dielectrophoresis. When applied for size-based sorting of DNA molecules, our sorting method offers two major advantages compared to earlier attempts with insulative dielectrophoresis: Its continuous operation allows for high-throughput analysis, and it only requires electric field strengths as low as approximately 10 Vcm.

19.
Nature ; 443(7107): 59-62, 2006 Sep 07.
Article in English | MEDLINE | ID: mdl-16957725

ABSTRACT

Generally, the motion of fluids is smooth and laminar at low speeds but becomes highly disordered and turbulent as the velocity increases. The transition from laminar to turbulent flow can involve a sequence of instabilities in which the system realizes progressively more complicated states, or it can occur suddenly. Once the transition has taken place, it is generally assumed that, under steady conditions, the turbulent state will persist indefinitely. The flow of a fluid down a straight pipe provides a ubiquitous example of a shear flow undergoing a sudden transition from laminar to turbulent motion. Extensive calculations and experimental studies have shown that, at relatively low flow rates, turbulence in pipes is transient, and is characterized by an exponential distribution of lifetimes. They also suggest that for Reynolds numbers exceeding a critical value the lifetime diverges (that is, becomes infinitely large), marking a change from transient to persistent turbulence. Here we present experimental data and numerical calculations covering more than two decades of lifetimes, showing that the lifetime does not in fact diverge but rather increases exponentially with the Reynolds number. This implies that turbulence in pipes is only a transient event (contrary to the commonly accepted view), and that the turbulent and laminar states remain dynamically connected, suggesting avenues for turbulence control.

20.
J Biomech ; 39(7): 1191-200, 2006.
Article in English | MEDLINE | ID: mdl-15896796

ABSTRACT

The measurement of blood-plasma velocity distributions with spatial and temporal resolution in vivo is inevitable for the determination of shear stress distributions in complex geometries at unsteady flow conditions like in the beating heart. A non-intrusive, whole-field velocity measurement technique is required that is capable of measuring instantaneous flow fields at sub-millimeter scales in highly unsteady flows. Micro particle image velocimetry (muPIV) meets these demands, but requires special consideration and methodologies in order to be utilized for in vivo studies in medical and biological research. We adapt muPIV to measure the blood-plasma velocity in the beating heart of a chicken embryo. In the current work, bio-inert, fluorescent liposomes with a nominal diameter of 400 nm are added to the flow as a tracer. Because of their small dimension and neutral buoyancy the liposomes closely follow the movement of the blood-plasma and allow the determination of the velocity gradient close to the wall. The measurements quantitatively resolve the velocity distribution in the developing ventricle and atrium of the embryo at nine different stages within the cardiac cycle. Up to 400 velocity vectors per measurement give detailed insight into the fluid dynamics of the primitive beating heart. A rapid peristaltic contraction accelerates the flow to peak velocities of 26 mm/s, with the velocity distribution showing a distinct asymmetrical profile in the highly curved section of the outflow tract. In relation to earlier published gene-expression experiments, the results underline the significance of fluid forces for embryonic cardiogenesis. In general, the measurements demonstrate that muPIV has the potential to develop into a general tool for instationary flow conditions in complex flow geometries encountered in cardiovascular research.


Subject(s)
Blood Flow Velocity/physiology , Coronary Circulation/physiology , Heart/embryology , Heart/physiology , Hemorheology/methods , Image Interpretation, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Animals , Chick Embryo , Chickens , Microspheres
SELECTION OF CITATIONS
SEARCH DETAIL
...