Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 11(6): 2616-2629, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33767824

ABSTRACT

Buccinum undatum is a subtidal gastropod that exhibits clear spatial variation in several phenotypic shell traits (color, shape, and thickness) across its North Atlantic distribution. Studies of spatial phenotypic variation exist for the species; however, population genetic studies have thus far relied on a limited set of mitochondrial and microsatellite markers. Here, we greatly expand on previous work by characterizing population genetic structure in B. undatum across the North Atlantic from SNP variation obtained by RAD sequencing. There was a high degree of genetic differentiation between Canadian and European populations (Iceland, Faroe Islands, and England) consistent with the divergence of populations in allopatry (F ST > 0.57 for all pairwise comparisons). In addition, B. undatum populations within Iceland, the Faroe Islands, and England are typified by weak but significant genetic structuring following an isolation-by-distance model. Finally, we established a significant correlation between genetic structuring in Iceland and two phenotypic traits: shell shape and color frequency. The works detailed here enhance our understanding of genetic structuring in B. undatum and establish the species as an intriguing model for future genome-wide association studies.

2.
Glob Chang Biol ; 26(2): 1012-1022, 2020 02.
Article in English | MEDLINE | ID: mdl-31657513

ABSTRACT

Non-indigenous species (NIS) reach every corner of the world, at times wreaking havoc on ecosystems and costing the global economy billions of dollars. A rapid and accurate biosurveillance tool tailored to a particular biogeographic region is needed to detect NIS when they are first introduced into an area as traditional detection methods are expensive and require specialized expertise. Metabarcoding of environmental and community DNA meets those biosurveillance requirements; a novel tool tailored to the Northwest Pacific Ocean is presented here using an approach that could revolutionize early detection of NIS. Eight newly designed genetic markers for multiple gene regions were implemented to meet the stringent taxonomic requirements for the detection of NIS across four major marine phyla. The tool was considered highly successful because it identified 12 known NIS in the study area and a further seven species representing potential new records. Overall community composition detected here was statistically different between substrate types; zooplankton sampling accounted for significantly higher species richness than filtered sea water in most cases, but this was dominated by mollusk and arthropod species. Both substrate types sampled were required to identify the wide taxonomic breadth of known NIS in the study area. Intensive sampling is known to be paramount for the detection of rare species, including new incursions of NIS, thus it is recommended to include diverse DNA sampling protocols based on species' life-history characteristics for broad detection capacity. Application of a metabarcoding-based molecular biosurveillance tool optimized for biogeographic regions enables rapid and accurate early detection across a wide taxonomic range to allow quick implementation of eradication or control efforts and potentially mitigate some of the devastating effects of NIS worldwide.


Subject(s)
Biosurveillance , Introduced Species , Animals , Biodiversity , DNA , DNA Barcoding, Taxonomic , Ecosystem , Pacific Ocean
SELECTION OF CITATIONS
SEARCH DETAIL
...