Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomaterials ; 22(5): 453-62, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11214756

ABSTRACT

The bioinspired strategy of triggered release of Ca2+ from liposomal compartments was used to induce rapid gelation of polysaccharide and protein-based hydrogels. Thermally triggerable liposomes were designed by entrapping CaCl2 within liposomes constructed of 90% dipalmitoylphosphatidylcholine and 10% dimyristoylphosphatidylcholine. These liposomes released greater than 90% of entrapped Ca2+ when heated to 37 degrees C. A precursor fluid containing liposomes suspended in aqueous sodium alginate remained fluid for several days at room temperature but gelled rapidly when heated to 37 degrees C, as a result of Ca2+ release and formation of crosslinked Ca-alginate. Alternatively, thermally triggered Ca2+ release from liposomes was used to activate enzyme-catalyzed crosslinking of proteins to form hydrogels. A mixture of Ca-loaded liposomes, fibrinogen, and a Ca2+-dependent transglutaminase enzyme (either human recombinant FXIII or guinea pig liver transglutaminase) remained fluid indefinitely when stored at room temperature, but gelled rapidly when heated to 37 degrees C. SDS-PAGE of the reaction mixture revealed that gelation was due to enzymatic crosslinking of the alpha and gamma chains of fibrinogen, and oscillating rheometry revealed gel formation within 10 min of heating to 37 degrees C. This new approach may be useful for developing rapidly gelling injectable biomaterials that can be stored at room temperature and injected in a minimally invasive manner into a body tissue or cavity, upon which rapid solidification would occur. This versatile bioinspired strategy could be utilized for the delivery of biomaterials for tissue repair and reconstruction, and local site-directed drug delivery.


Subject(s)
Calcium/metabolism , Hydrogels , Lipid Metabolism , Polysaccharides/chemistry , Proteins/chemistry , Kinetics
2.
Antimicrob Agents Chemother ; 43(10): 2404-8, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10508015

ABSTRACT

The multidrug transporter NorA contributes to the resistance of Staphylococcus aureus to fluoroquinolone antibiotics by promoting their active extrusion from the cell. Previous studies with the alkaloid reserpine, the first identified inhibitor of NorA, indicate that the combination of a chemical NorA inhibitor with a fluoroquinolone could improve the efficacy of this class of antibiotics. Since reserpine is toxic to humans at the concentrations required to inhibit NorA, we sought to identify new inhibitors of NorA that may be used in a clinical setting. Screening of a chemical library yielded a number of structurally diverse inhibitors of NorA that were more potent than reserpine. The new inhibitors act in a synergistic manner with the most widely used fluoroquinolone, ciprofloxacin, by substantially increasing its activity against both NorA-overexpressing and wild-type S. aureus isolates. Furthermore, the inhibitors dramatically suppress the emergence of ciprofloxacin-resistant S. aureus upon in vitro selection with this drug. Some of these new inhibitors, or their derivatives, may prove useful for augmentation of the antibacterial activities of fluoroquinolones in the clinical setting.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Anti-Infective Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Staphylococcus aureus/drug effects , ATP Binding Cassette Transporter, Subfamily B/metabolism , Bacterial Proteins/metabolism , Ciprofloxacin/pharmacology , Drug Interactions , Drug Resistance, Microbial , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins , Reserpine/pharmacology , Staphylococcus aureus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL