Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(20): 7031-7055, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37793073

ABSTRACT

The primary focus of GAMESS over the last 5 years has been the development of new high-performance codes that are able to take effective and efficient advantage of the most advanced computer architectures, both CPU and accelerators. These efforts include employing density fitting and fragmentation methods to reduce the high scaling of well-correlated (e.g., coupled-cluster) methods as well as developing novel codes that can take optimal advantage of graphical processing units and other modern accelerators. Because accurate wave functions can be very complex, an important new functionality in GAMESS is the quasi-atomic orbital analysis, an unbiased approach to the understanding of covalent bonds embedded in the wave function. Best practices for the maintenance and distribution of GAMESS are also discussed.

2.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37497819

ABSTRACT

Electronic structure calculations have the potential to predict key matter transformations for applications of strategic technological importance, from drug discovery to material science and catalysis. However, a predictive physicochemical characterization of these processes often requires accurate quantum chemical modeling of complex molecular systems with hundreds to thousands of atoms. Due to the computationally demanding nature of electronic structure calculations and the complexity of modern high-performance computing hardware, quantum chemistry software has historically failed to operate at such large molecular scales with accuracy and speed that are useful in practice. In this paper, novel algorithms and software are presented that enable extreme-scale quantum chemistry capabilities with particular emphasis on exascale calculations. This includes the development and application of the multi-Graphics Processing Unit (GPU) library LibCChem 2.0 as part of the General Atomic and Molecular Electronic Structure System package and of the standalone Extreme-scale Electronic Structure System (EXESS), designed from the ground up for scaling on thousands of GPUs to perform high-performance accurate quantum chemistry calculations at unprecedented speed and molecular scales. Among various results, we report that the EXESS implementation enables Hartree-Fock/cc-pVDZ plus RI-MP2/cc-pVDZ/cc-pVDZ-RIFIT calculations on an ionic liquid system with 623 016 electrons and 146 592 atoms in less than 45 min using 27 600 GPUs on the Summit supercomputer with a 94.6% parallel efficiency.

3.
J Phys Chem A ; 126(39): 6995-7006, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36166638

ABSTRACT

A generalized, projection-based transformation of the method-agnostic Fock operator in various ab initio fragment-based quantum chemistry methods has been developed for the treatment of interfragment covalent bonds. This transformation freezes the relevant localized molecular orbital associated with each interfragment bond, thereby restricting the variational subspace of the fragment wave functions, in order to maintain the proper physical characteristics of the involved covalent bonds. In addition, sets of orbitals that would lead to multiple occupancy of certain orbitals are explicitly removed from the variational space. The transformation is developed for the specific case of mutually orthonormal frozen and unfrozen orbitals within each fragment. The newly developed approach is then used to study model systems with two popular ab initio fragment-based methods, and the results of these calculations are compared to those obtained by existing methodologies. Analysis is focused on both quantitative and qualitative accuracy as well as computational scalability and stability. Other methods for which the developed formalisms are appropriate are outlined, and future extensions of the methods are discussed.

4.
J Chem Phys ; 155(15): 154101, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34686043

ABSTRACT

An alternative formulation of the non-orthogonal molecular orbital model of electronic structure theory is developed based on the expansion of the inverse molecular orbital overlap matrix. From this model, a hierarchy of ab initio fragment-based quantum chemistry methods, referred to as the nth-order expanded non-orthogonal molecular orbital methods, are developed using a minimal number of approximations, each of which is frequently employed in intermolecular interaction theory. These novel methods are compared to existing fragment-based quantum chemistry methods, and the implications of those significant differences, where they exist, between the methods developed herein and those already existing methods are examined in detail. Computational complexities and theoretical scaling are also analyzed and discussed. Future extensions for the hierarchy of methods, to account for additional intrafragment and interfragment interactions, are outlined.

5.
J Phys Chem A ; 124(23): 4557-4582, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32379450

ABSTRACT

Electronic structure theory (especially quantum chemistry) has thrived and has become increasingly relevant to a broad spectrum of scientific endeavors as the sophistication of both computer architectures and software engineering has advanced. This article provides a brief history of advances in both hardware and software, from the early days of IBM mainframes to the current emphasis on accelerators and modern programming practices.

6.
J Chem Phys ; 152(15): 154102, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32321259

ABSTRACT

A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.

SELECTION OF CITATIONS
SEARCH DETAIL
...