Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(7): 4975-4988, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28074972

ABSTRACT

Proton/fluoride spin-lattice (T1) nuclear magnetic relaxation dispersion (NMRD) measurements of 1-butyl-3-methyl-1H-imidazolium hexafluorophosphate, [C4mim][PF6], have been carried out using high field spectrometers and a fast-field-cycling instrument at proton Larmor frequencies ranging from 10 kHz to 40 MHz, at different temperatures. The NMRD profiles are interpreted by means of a simple relaxation model based on the inter- and intra-ionic dipole-dipole relaxation mechanism. Using an atomic molecular-ion dynamic simulation at 323 K the relevant spin dipole-dipole (DD) correlation functions are calculated. The results indicate that the NMRD profiles can be rationalized using intra- and inter-ionic spin DD interactions, however, anions are mainly modulated by ionic reorientation because of temporary correlations with cations, where modulation by translational diffusion plays a minor role. Reorientational dynamics of charge-neutral ion couples (i.e. [C4mim][PF6]) and [C4mim]+ ions are in the nano-second (ns) time range whereas the reorientation of [PF6]- is characterized by a reorientational correlation time in the pico-second (ps) regime. Based on the NMRD profiles we conclude that the main relaxation mechanism for [PF6]- is due to fast internal reorientational motion, a partially averaged F-F intra- and F-H inter-ionic DD coupling as the anion resides in close proximity to its temporary oppositely charged cation partner. The F-T1-NMRD data display a ns dispersion which is interpreted as being due to correlated reorientational modulations resulting from the H-containing charge-neutral ion couple [C4mim][PF6]. The analysis of ionicity is based on the free anion fraction, f, and it increases with temperature with f → 1 at the highest temperatures investigated. The fraction is obtained from the H-F NMRD profiles as correlated-non-correlated dynamics of the ions. The analysis of T1 relaxation rates of C, H, F and P at high fields cannot generally give the fraction of ions but is consistent with the interpretation based on the NMRD profiles with relaxation contributions due to DD-intra and -inter, CSA-intra (and -inter for C), including spin rotation for P. The investigation has led to a description of the mechanics governing ion transport in the title ionic liquid via identification of transient correlated/non-correlated ion dynamics.

2.
J Fluoresc ; 19(5): 837-45, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19415473

ABSTRACT

The extended Förster theory (EFT) of electronic energy transport accounts for translational and rotational dynamics, which are neglected by the classical Förster theory (FT). EFT has been developed for electronic energy transfer within donor-acceptor pairs [Isaksson, et al, Phys. Chem. Chem. Phys., 9, 1941(2007)] and donor-donor pairs [Johansson, et al, J. Chem. Phys., 105, 10896 (1996); Norlin, et al, Phys. Chem. Chem. Phys., 10, 6962(2008)]. For donors that exhibit different or identical non-exponential fluorescence relaxation within a donor-donor pair, the process of reverberating energy migration is reversible to a higher or lower degree. Here the impact of the EFT has been studied with respect to its influence on fluorescence quantum yields, fluorescence lifetimes as well as depolarisation experiments. The FT predicts relative fluorescence quantum yields which usually agree with the EFT within experimental accuracy, however, substantial deviations occurs in the steady-state and in particular the time-resolved depolarisation data.


Subject(s)
Macromolecular Substances/chemistry , Quantum Theory , Computer Simulation , Energy Transfer , Fluorescence , Spectrometry, Fluorescence , Time Factors
3.
Phys Chem Chem Phys ; 10(46): 6962-70, 2008 Dec 14.
Article in English | MEDLINE | ID: mdl-19030591

ABSTRACT

An extended Förster theory (EFT) is derived and outlined for electronic energy migration between two fluorescent molecules which are chemically identical, but photophysically non-identical. These molecules exhibit identical absorption and fluorescence spectra, while their fluorescence lifetimes differ. The latter means that the excitation probability becomes irreversible. Unlike the case of equal lifetimes, which is often referred to as, donor-donor energy migration (DDEM), the observed fluorescence relaxation is then no longer invariant to the energy migration process. To distinguish, the present case is therefore referred to as partial donor-donor energy migration (PDDEM). The EFT of PPDEM is described by a stochastic master equation (SME), which has been derived from the stochastic Liouville equation (SLE) of motion. The SME accounts for the reorienting as well as the translational motions of the interacting chromophores. Synthetic fluorescence lifetime and depolarisation data that mimics time-correlated single photon counting experiments have been generated and re-analysed. The rates of reorientation, as well as the orientational configurations of the interacting D-groups were examined. Moreover the EFT of PPDEM overcomes the classical "kappa(2)-problem" and the frequently applied approximation of kappa(2) = 2/3 in the data analyses. An outline for the analyses of fluorescence lifetime and depolarisation data is also given, which might prove applicable to structural studies of D-labelled macromolecules, e.g. proteins. The EFT presented here brings the analyses of PDDEM data to the same level of molecular detail as that used in ESR- and NMR-spectroscopy.


Subject(s)
Fluorescent Dyes/chemistry , Proteins/chemistry , Probability , Quantum Theory
4.
J Magn Reson ; 195(1): 103-11, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18809345

ABSTRACT

Aqueous solutions of simple nickel(II) salts are a classical test case for theories of the paramagnetic relaxation enhancement (PRE) and its dependence on the magnetic field (nuclear magnetic relaxation dispersion, NMRD), going back to late fifties. We present here new experimental data, extending the NMRD range up to 21T (900 MHz). In addition to salt solutions in (acidified) water, we have also measured on solutions containing glycerol. The aqueous solution data do not show any significant changes compared to the earlier experiments. The interpretation, based on the general ("slow-motion") theory is also similar to the earlier work from our laboratory. The NMRD-data in mixed solvents are qualitatively different, indicating that the glycerol not only changes the solution viscosity, but may also enter the first coordination sphere of the metal ion, resulting in lower symmetry complexes, characterized by non-vanishing averaged zero-field splitting. This hypothesis is corroborated by molecular dynamics simulations. A strategy appropriate for interpreting the NMRD-data for the chemically complicated systems of this type is proposed.


Subject(s)
Complex Mixtures/chemistry , Glycerol/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Nickel/chemistry , Salts/chemistry , Water/chemistry , Computer Simulation
5.
Biophys J ; 58(1): 167-75, 1990 Jul.
Article in English | MEDLINE | ID: mdl-2383629

ABSTRACT

We present a theoretical calculation of the lineshape function based on the solution of the semiclassical Liouville equation, of a two-site chemical exchange model of biological relevance. The bound site is allowed to be in the slow region regime that is the inverse quadrupole interaction of one bound site is in the same range as the reorientational correlation time. We compare different chemical exchange models, and several different physical situations are investigated. The variation of the width at half height (WHH) and the relative intensity (l/lo) is shown to be important, experimentally accessible quantities that are useful in order to discriminate between different model systems.


Subject(s)
Body Fluids/metabolism , Intracellular Fluid/metabolism , Models, Biological , Sodium/metabolism , Magnetic Resonance Spectroscopy/methods , Mathematics
SELECTION OF CITATIONS
SEARCH DETAIL
...