Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Oral Rehabil ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803211

ABSTRACT

BACKGROUND: Studies present ambiguous findings regarding the role of tryptophan and its metabolites, kynurenine and serotonin in chronic musculoskeletal pain. This systematic review aimed to investigate the expression of tryptophan and its metabolites, serotonin and kynurenine in patients with local and generalized chronic musculoskeletal pain in comparison with pain-free controls. METHODS: An electronic search was conducted in the databases MEDLINE, CINAHL, EMBASE, the Cochrane Central Registry of Controlled Trials (CENTRAL) and Web of Science for clinical and observational trials from the beginning of each database to 21 April 2023. Out of 6734 articles, a total of 17 studies were included; 12 studies were used in the meta-analysis of serotonin, 3 regarding tryptophan and 2 studies for a narrative synthesis regarding kynurenine. Risk of bias was assessed using the quality assessment tool for observational cohort and cross-sectional studies of the National Heart, Lung, and Blood Institute, while the certainty of evidence was by GRADE. RESULTS: All included studies showed a low risk of bias. The meta-analysis showed lower blood levels of tryptophan (p < .001; very low quality of evidence) and higher blood levels of serotonin (p < .001; very low-quality evidence) in patients with generalized musculoskeletal pain, when compared to pain-free individuals. In local chronic musculoskeletal pain, there were higher blood levels of serotonin (p=.251; very low quality of evidence) compared to pain-free individuals. Regarding kynurenine, the studies reported both higher and lower blood levels in generalized chronic musculoskeletal pain compared to pain-free individuals. CONCLUSIONS: The blood levels of tryptophan and its metabolites serotonin and kynurenine seem to influence chronic musculoskeletal pain.

2.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34266954

ABSTRACT

Intestinal inflammation is the underlying basis of colitis and the inflammatory bowel diseases. These syndromes originate from genetic and environmental factors that remain to be fully identified. Infections are possible disease triggers, including recurrent human food-poisoning by the common foodborne pathogen Salmonella enterica Typhimurium (ST), which in laboratory mice causes progressive intestinal inflammation leading to an enduring colitis. In this colitis model, disease onset has been linked to Toll-like receptor-4-dependent induction of intestinal neuraminidase activity, leading to the desialylation, reduced half-life, and acquired deficiency of anti-inflammatory intestinal alkaline phosphatase (IAP). Neuraminidase (Neu) inhibition protected against disease onset; however, the source and identity of the Neu enzyme(s) responsible remained unknown. Herein, we report that the mammalian Neu3 neuraminidase is responsible for intestinal IAP desialylation and deficiency. Absence of Neu3 thereby prevented the accumulation of lipopolysaccharide-phosphate and inflammatory cytokine expression in providing protection against the development of severe colitis.


Subject(s)
Colitis/immunology , Intestines/immunology , Neuraminidase/immunology , Salmonella Food Poisoning/immunology , Animals , Colitis/genetics , Colitis/microbiology , Disease Models, Animal , Female , Humans , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Neuraminidase/genetics , Recurrence , Salmonella Food Poisoning/genetics , Salmonella Food Poisoning/microbiology , Salmonella typhimurium/immunology , Salmonella typhimurium/physiology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
3.
Immunohematology ; 36(3): 99-103, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33112634

ABSTRACT

CONCLUSIONS: This update on the P1PK blood group system (Hellberg Å, Westman JS, Thuresson B, Olsson ML. P1PK: the blood group system that changed its name and expanded. Immunohematology 2013;29:25-33) provides recent findings concerning the P1PK blood group system that have both challenged and confirmed old theories. The glycosphingolipids can no longer be considered the sole carriers of the antigens in this system because the P1 antigen has been detected on human red blood cell glycoproteins. New indications suggest that P1Pk synthase activity truly depends on the DXD motif, and the genetic background and molecular mechanism behind the common P1 and P2 phenotypes were found to depend on transcriptional regulation. Transcription factors bind the P1 allele selectively to a motif around rs5751348 in a regulatory region of A4GALT, which enhances transcription of the gene. Nonetheless, unexplained differences in antigen expression between individuals remain.


Subject(s)
Blood Group Antigens/genetics , Alleles , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Gene Expression Regulation , Humans
4.
Transfusion ; 59(3): 1108-1117, 2019 03.
Article in English | MEDLINE | ID: mdl-30597575

ABSTRACT

BACKGROUND: The P1 antigen was first described in 1927 and belongs to the P1PK histo-blood group system, together with Pk and NOR. The A4GALT-encoded 4-α-galactosyltransferase synthesizes these antigens and has been considered to extend glycolipids exclusively. However, contradicting studies have been published regarding the presence of P1 on human glycoproteins. In other species, P1 occurs on glycoproteins. Furthermore, human ABH antigens occur on both glycolipids and glycoproteins and are biochemically related to P1. Thus, we hypothesized that P1 is present on RBC glycoproteins in humans. STUDY DESIGN AND METHODS: RBCs of known P1 /P2 status (phenotype and rs8138197 genotype) were used. The RBC surface glycans were modified with α-galactosidases, papain, and/or peptide-N-glycosidase F. RBC membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/immunoblot. A new P 1 /P 2 -allelic discrimination assay based on rs5751348 was validated. RESULTS: P1 occurs on various glycoproteins, seen as smearlike patterns in anti-P1-stained immunoblots with RBC membranes of P1 but not P2 or p phenotype. There was a significant difference between the staining of P 1 -homozygous and P 1 -heterozygous RBCs (P 1 P 1 > P 1 P 2 ), as well as intragenotypic variation. Immunoblotting banding patterns show major carriers at approximately 50 and 100 kDa. P1 staining was lost after treatment of RBCs with α-galactosidase of broad Galα-1,3/4/6-specificity. Peptide-N-glycosidase F treatment reduced the P1 signal, while papain or α-1,3-specific galactosidase did not. P 1 /P 2 status was confirmed by a new rs5751348 assay. CONCLUSION: Our data indicate that the P1 antigen can reside on human RBC glycoproteins. Glycosidase studies suggest that at least part of the epitopes occur on N-glycans.


Subject(s)
Erythrocytes/metabolism , Glycoproteins/metabolism , P Blood-Group System/metabolism , Alleles , Electrophoresis, Polyacrylamide Gel , Galactosyltransferases/metabolism , Genotype , Globosides/metabolism , Humans , Phenotype
5.
Cell Host Microbe ; 24(4): 500-513.e5, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30308156

ABSTRACT

Sepsis is a life-threatening inflammatory syndrome accompanying a bloodstream infection. Frequently secondary to pathogenic bacterial infections, sepsis remains difficult to treat as a singular disease mechanism. We compared the pathogenesis of murine sepsis experimentally elicited by five bacterial pathogens and report similarities among host responses to Gram-negative Salmonella and E. coli. We observed that a host protective mechanism involving de-toxification of lipopolysaccharide by circulating alkaline phosphatase (AP) isozymes was incapacitated during sepsis caused by Salmonella or E. coli through activation of host Toll-like receptor 4, which triggered Neu1 and Neu3 neuraminidase induction. Elevated neuraminidase activity accelerated the molecular aging and clearance of AP isozymes, thereby intensifying disease. Mice deficient in the sialyltransferase ST3Gal6 displayed increased disease severity, while deficiency of the endocytic lectin hepatic Ashwell-Morell receptor was protective. AP augmentation or neuraminidase inhibition diminished inflammation and promoted host survival. This study illuminates distinct routes of sepsis pathogenesis, which may inform therapeutic development.


Subject(s)
Alkaline Phosphatase/metabolism , Escherichia coli Infections/microbiology , Host-Pathogen Interactions , Lipopolysaccharides/metabolism , Neuraminidase/metabolism , Salmonella Infections/microbiology , Sepsis/microbiology , Alkaline Phosphatase/genetics , Animals , Disease Models, Animal , Escherichia coli/pathogenicity , Escherichia coli Infections/blood , Escherichia coli Infections/enzymology , Escherichia coli Infections/pathology , Humans , Inflammation/blood , Inflammation/enzymology , Inflammation/microbiology , Inflammation/pathology , Mice , Mice, Knockout , Neuraminidase/genetics , Salmonella Infections/blood , Salmonella Infections/enzymology , Salmonella Infections/pathology , Salmonella typhimurium/pathogenicity , Sepsis/blood , Sepsis/enzymology , Sepsis/pathology , Toll-Like Receptor 4/drug effects
6.
Blood ; 131(14): 1611-1616, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29438961

ABSTRACT

P1 and Pk are glycosphingolipid antigens synthesized by the A4GALT-encoded α1,4-galactosyltransferase, using paragloboside and lactosylceramide as acceptor substrates, respectively. In addition to the compatibility aspects of these histo-blood group molecules, both constitute receptors for multiple microbes and toxins. Presence or absence of P1 antigen on erythrocytes determines the common P1 (P1+Pk+) and P2 (P1-Pk+weak) phenotypes. A4GALT transcript levels are higher in P1 individuals and single-nucleotide polymorphisms (SNPs) in noncoding regions of A4GALT, particularly rs5751348, correlate with P1/P2 status. Despite these recent findings, the molecular mechanism underlying these phenotypes remains elusive. The In(Lu) phenotype is caused by Krüppel-like factor 1 (KLF1) haploinsufficiency and shows decreased P1 levels on erythrocytes. We therefore hypothesized KLF1 regulates A4GALT expression. Intriguingly, P1 -specific sequences including rs5751348 revealed potential binding sites for several hematopoietic transcription factors, including KLF1. However, KLF1 binding did not explain P1 -specific shifts in electrophoretic mobility-shift assays and small interfering RNA silencing of KLF1 did not affect A4GALT transcript levels. Instead, protein pull-down experiments using P1 but not P2 oligonucleotide probes identified runt-related transcription factor 1 (RUNX1) by mass spectrometry. Furthermore, RUNX1 binds P1 alleles selectively, and knockdown of RUNX1 significantly decreased A4GALT transcription. These data indicate that RUNX1 regulates A4GALT and thereby the expression of clinically important glycosphingolipids implicated in blood group incompatibility and host-pathogen interactions.


Subject(s)
Alleles , Core Binding Factor Alpha 2 Subunit/metabolism , Galactosyltransferases/biosynthesis , Globosides/biosynthesis , Haploinsufficiency , Transcription, Genetic , Cell Line , Core Binding Factor Alpha 2 Subunit/genetics , Galactosyltransferases/genetics , Gene Silencing , Globosides/genetics , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
7.
Immunohematology ; 34(4): 161-163, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30624951

ABSTRACT

CONCLUSIONS: The main change that has occurred in the GLOB blood group system since the GLOB review published in this journal in 2013 is the addition of an antigen. The high-prevalence PX2 antigen, originally recognized as the x2 glycosphingolipid, is expressed on red blood cells of most individuals and is elevated in the rare PP1Pk-negative p blood group phenotype. P synthase, encoded by B3GALNT1, was found to elongate paragloboside to PX2 by adding the terminal ß3GalNAc moiety. Hence, PX2 was moved from the GLOB collection to the GLOB system. The presence of naturally-occurring anti-PX2 was noted in P1k and P2k individuals exhibiting nonfunctional P synthase. Although the clinical significance of this specificity remains unclear, a recommendation to avoid transfusing Pk patients with p phenotype blood has been made. Currently, 13 mutations at the highly conserved B3GALNT1 locus have been found to abolish P synthase function and are recognized as null alleles by the International Society of Blood Transfusion. A new allele with a missense mutation but resulting in normal expression of P has been assigned GLOB*02. Finally, the GLOB collection was made obsolete after the move of LKE antigen to the 901 series.


Subject(s)
Blood Group Antigens/immunology , Alleles , Erythrocytes , Humans , N-Acetylgalactosaminyltransferases , Phenotype
8.
J Biol Chem ; 290(30): 18505-18, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26055721

ABSTRACT

The x2 glycosphingolipid is expressed on erythrocytes from individuals of all common blood group phenotypes and elevated on cells of the rare P/P1/P(k)-negative p blood group phenotype. Globoside or P antigen is synthesized by UDP-N-acetylgalactosamine:globotriaosyl-ceramide 3-ß-N-acetylgalactosaminyltransferase encoded by B3GALNT1. It is the most abundant non-acid glycosphingolipid on erythrocytes and displays the same terminal disaccharide, GalNAcß3Gal, as x2. We encountered a patient with mutations in B3GALNT1 causing the rare P-deficient P1 (k) phenotype and whose pretransfusion plasma was unexpectedly incompatible with p erythrocytes. The same phenomenon was also noted in seven other unrelated P-deficient individuals. Thin-layer chromatography, mass spectrometry, and flow cytometry were used to show that the naturally occurring antibodies made by p individuals recognize x2 and sialylated forms of x2, whereas x2 is lacking on P-deficient erythrocytes. Overexpression of B3GALNT1 resulted in synthesis of both P and x2. Knockdown experiments with siRNA against B3GALNT1 diminished x2 levels. We conclude that x2 fulfills blood group criteria and is synthesized by UDP-N-acetylgalactosamine: globotriaosylceramide 3-ß-N-acetylgalactosaminyltransferase. Based on this linkage, we proposed that x2 joins P in the GLOB blood group system (ISBT 028) and is renamed PX2 (GLOB2). Thus, in the absence of a functional P synthase, neither P nor PX2 are formed. As a consequence, naturally occurring anti-P and anti-PX2 can be made. Until the clinical significance of anti-PX2 is known, we also recommend that rare P1 (k) or P2 (k) erythrocyte units are preferentially selected for transfusion to P(k) patients because p erythrocytes may pose a risk for hemolytic transfusion reactions due to their elevated PX2 levels.


Subject(s)
Blood Group Antigens/genetics , Disaccharides/genetics , Erythrocytes/metabolism , Glycosphingolipids/genetics , N-Acetylgalactosaminyltransferases/genetics , Antibodies/genetics , Antibodies/immunology , Blood Group Antigens/immunology , Blood Group Antigens/metabolism , Erythrocytes/immunology , Erythrocytes/pathology , Globosides/metabolism , Glycosphingolipids/biosynthesis , Humans , Mutation , N-Acetylgalactosaminyltransferases/metabolism , Phenotype
9.
J Immunol ; 194(5): 2309-18, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25637016

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) cause hemolytic uremic syndrome (HUS). This study investigated whether Stx2 induces hemolysis and whether complement is involved in the hemolytic process. RBCs and/or RBC-derived microvesicles from patients with STEC-HUS (n = 25) were investigated for the presence of C3 and C9 by flow cytometry. Patients exhibited increased C3 deposition on RBCs compared with controls (p < 0.001), as well as high levels of C3- and C9-bearing RBC-derived microvesicles during the acute phase, which decreased after recovery. Stx2 bound to P1 (k) and P2 (k) phenotype RBCs, expressing high levels of the P(k) Ag (globotriaosylceramide), the known Stx receptor. Stx2 induced the release of hemoglobin and lactate dehydrogenase in whole blood, indicating hemolysis. Stx2-induced hemolysis was not demonstrated in the absence of plasma and was inhibited by heat inactivation, as well as by the terminal complement pathway Ab eculizumab, the purinergic P2 receptor antagonist suramin, and EDTA. In the presence of whole blood or plasma/serum, Stx2 induced the release of RBC-derived microvesicles coated with C5b-9, a process that was inhibited by EDTA, in the absence of factor B, and by purinergic P2 receptor antagonists. Thus, complement-coated RBC-derived microvesicles are elevated in HUS patients and induced in vitro by incubation of RBCs with Stx2, which also induced hemolysis. The role of complement in Stx2-mediated hemolysis was demonstrated by its occurrence only in the presence of plasma and its abrogation by heat inactivation, EDTA, and eculizumab. Complement activation on RBCs could play a role in the hemolytic process occurring during STEC-HUS.


Subject(s)
Coated Vesicles/drug effects , Erythrocytes/drug effects , Escherichia coli Infections/blood , Escherichia coli O157/pathogenicity , Hemolytic-Uremic Syndrome/blood , Shiga Toxin/toxicity , Adult , Aged , Antibodies, Monoclonal, Humanized/pharmacology , Child , Child, Preschool , Coated Vesicles/chemistry , Coated Vesicles/immunology , Complement Activation/drug effects , Complement C3/chemistry , Complement C9/chemistry , Complement Membrane Attack Complex/chemistry , Edetic Acid/pharmacology , Erythrocytes/chemistry , Erythrocytes/immunology , Erythrocytes/pathology , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Escherichia coli O157/immunology , Escherichia coli O157/metabolism , Female , Gene Expression , Hemolysis/drug effects , Hemolytic-Uremic Syndrome/immunology , Hemolytic-Uremic Syndrome/microbiology , Hemolytic-Uremic Syndrome/pathology , Humans , Infant , L-Lactate Dehydrogenase/metabolism , Male , Middle Aged , Purinergic P2 Receptor Antagonists/pharmacology , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/immunology , Shiga Toxin/chemistry , Shiga Toxin/immunology , Suramin/pharmacology , Trihexosylceramides/immunology
10.
Transfusion ; 54(7): 1831-5, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24417201

ABSTRACT

BACKGROUND: Cells of the clinically important p histo-blood group phenotype lack P1, P(k) , and P glycosphingolipid antigens. All cases investigated so far are due to alterations in the 4-α-galactosyltransferase-encoding Exon 3 of A4GALT. Repetitive elements in the genome can mediate DNA rearrangements, the most abundant being the Alu family of repeats. STUDY DESIGN AND METHODS: The aim of this study was to determine the genetic basis of three p samples with intact A4GALT open reading frames, using long-range polymerase chain reaction (PCR) and sequencing. In addition, transcript measurements were performed with quantitative PCR. RESULTS: This is the first report of the p phenotype as the result of large deletions in A4GALT, comprising the proposed promoter and noncoding Exons 1 and 2a. The breakpoints were different in all three samples and revealed the presence of Alu or MIRb sequences directly flanking, or in close proximity to, all junctions. Furthermore, no A4GALT transcripts could be detected. CONCLUSION: In summary, our data elucidate a new explanation underlying the p phenotype, implicating the deleted regions of A4GALT as crucial for P1 and P(k) synthesis, possibly due to loss of binding sites for erythroid transcription factors. Furthermore, analysis of these regions will improve genetic blood group prediction.


Subject(s)
Galactosyltransferases/genetics , Gene Deletion , Globosides/deficiency , Regulatory Sequences, Nucleic Acid/genetics , Trihexosylceramides/deficiency , Alleles , Base Sequence , Blood Group Antigens/genetics , Globosides/genetics , Humans , Molecular Sequence Data , Phenotype , Trihexosylceramides/genetics
11.
Transfusion ; 53(11 Suppl 2): 2928-39, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23927681

ABSTRACT

BACKGROUND: The rare but clinically important null phenotypes of the P1PK and GLOB blood group systems are due to alterations in A4GALT and B3GALNT1, respectively. A recently identified single-nucleotide polymorphism in Exon 2a of A4GALT predicts the common P1 and P2 phenotypes but rare variants have not been tested. STUDY DESIGN AND METHODS: The aim of this study was to analyze 84 p, P1 (k) , and P2 (k) samples, with special emphasis on unknown alleles and the P(1) /P(2) marker. Of these, 27 samples came from individuals not previously investigated genetically and were therefore subjected to sequencing of A4GALT or B3GALNT1, and a subset was tested by flow cytometry. RESULTS: The P(1) /P(2) genotyping linked 20 p-inducing mutations in A4GALT to P(1) or P(2) allelic background. Eight p alleles remain unlinked due to compound heterozygosity. For 23 of 25 P(k) samples, concordant results were observed: P1 (k) samples had at least one P(1) allele while P2 (k) had P(2) only. The two remaining samples typed as P1+ and P1+(w) but were genetically P(2) /P(2) . A tendency toward higher P(k) antigen expression was observed on P1 (k) cells compared to P2 (k) . In total, six previously unknown null mutations were found and characterized in A4GALT while four new changes were revealed in B3GALNT1. CONCLUSION: For the first time, p alleles were shown to occur on both P(1) and P(2) allelic backgrounds. Furthermore, P(1) /P(2) genotyping predicted the P1 (k) versus P2 (k) phenotype in more than 90% of globoside-deficient samples. The number of GLOB-null alleles was increased by 50% and several P1PK-null alleles were identified.


Subject(s)
Alleles , Galactosyltransferases/genetics , Globosides/immunology , N-Acetylgalactosaminyltransferases/genetics , P Blood-Group System/genetics , P Blood-Group System/immunology , Blood Donors , Blood Grouping and Crossmatching , Cells, Cultured , Cohort Studies , Galactosyltransferases/metabolism , Gene Silencing , Genotyping Techniques , Globosides/genetics , Globosides/metabolism , Humans , Molecular Sequence Data , N-Acetylglucosaminyltransferases , Phenotype , Polymorphism, Single Nucleotide/physiology
12.
Blood ; 117(2): 678-87, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-20971946

ABSTRACT

The A4GALT locus encodes a glycosyltransferase that synthesizes the terminal Galα1-4Gal of the P(k) (Gb3/CD77) glycosphingolipid, important in transfusion medicine, obstetrics, and pathogen susceptibility. Critical nucleotide changes in A4GALT not only abolish P(k) formation but also another Galα1-4Gal-defined antigen, P1, which belongs to the only blood group system for which the responsible locus remains undefined. Since known A4GALT polymorphisms do not explain the P1-P(k)+ phenotype, P(2), we set out to elucidate the genetic basis of P(1)/P(2). Despite marked differences (P(1) > P(2)) in A4GALT transcript levels in blood, luciferase experiments showed no difference between P(1)/P(2)-related promoter sequences. Investigation of A4GALT mRNA in cultured human bone marrow cells revealed novel transcripts containing only the noncoding exon 1 and a sequence (here termed exon 2a) from intron 1. These 5'-capped transcripts include poly-A tails and 3 polymorphic sites, one of which was P(1)/P(2)-specific among > 200 donors and opens a short reading frame in P(2) alleles. We exploited these data to devise the first genotyping assays to predict P1 status. P(1)/P(2) genotypes correlated with both transcript levels and P1/P(k) expression on red cells. Thus, P(1) zygosity partially explains the well-known interindividual variation in P1 strength. Future investigations need to focus on regulatory mechanisms underlying P1 synthesis.


Subject(s)
Exons/genetics , Globosides/genetics , P Blood-Group System/genetics , RNA, Messenger/genetics , Alternative Splicing , Bone Marrow Cells , Cell Separation , Flow Cytometry , Genotype , Humans , Molecular Sequence Data , Phenotype , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Protein Isoforms , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...