Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 16(27): 6285-6293, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32602520

ABSTRACT

Complex fluids containing micelles, proteins, polymers and inorganic nanoparticles are often processed and used in high shear environments that can lead to structural changes at the nanoscale. Here, capillary rheometry is combined with small-angle neutron scattering (SANS) to simultaneously measure the viscosity and nanostructure of model complex fluids at industrially-relevant high shear rates. Capillary RheoSANS (CRSANS) uses pressure-driven flow through a long, flexible, silica capillary to generate wall shear rates up to 106 s-1 and measure pressure drops up to 500 bar. Sample volumes as small as 2 mL are required, which allow for measurement of supply-limited biological and deuterated materials. The device design, rheology and scattering methodologies, and broad sample capabilities are demonstrated by measuring a variety of model systems including silica nanoparticles, NIST monoclonal antibodies, and surfactant worm-like micelles. For a shear-thinning suspension of worm-like micelles, CRSANS measurements are in good agreement with traditional RheoSANS measurements. Collectively, these techniques provide insight into relationships between nanostructure and steady-shear viscosity over eight orders of magnitude in shear rate. Overall, CRSANS expands the capabilities of traditional RheoSANS instruments toward higher shear rates, enabling in situ structural measurements of soft materials at shear rates relevant to extrusion, coating, lubrication, and spraying applications.


Subject(s)
Micelles , Nanostructures , Rheology , Scattering, Small Angle , Viscosity
2.
J Colloid Interface Sci ; 576: 47-58, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32413780

ABSTRACT

HYPOTHESIS: Understanding the stability and rheological behavior of suspensions composed of anisotropic particles is challenging due to the complex interplay of hydrodynamic and colloidal forces. We propose that orientationally-dependent interactions resulting from the anisotropic nature of non-spherical sub-units strongly influences shear-induced particle aggregation/fragmentation and suspension rheological behavior. EXPERIMENTS: Wide-, small-, and ultra-small-angle X-ray scattering experiments were used to simultaneously monitor changes in size and fractal dimensions of boehmite aggregates from 6 to 10,000 Å as the sample was recirculated through an in-situ capillary rheometer. The latter also provided simultaneous suspension viscosity data. Computational fluid dynamics modeling of the apparatus provided a more rigorous analysis of the fluid flow. FINDINGS: Shear-induced aggregation/fragmentation was correlated with a complicated balance between hydrodynamic and colloidal forces. Multi-scale fractal aggregates formed in solution but the largest could be fragmented by shear. Orientationally-dependent interactions lead to a relatively large experimental suspension viscosity when the hydrodynamic force was small compared to colloidal forces. This manifests even at low boehmite mass fractions.

3.
Soft Matter ; 13(38): 6743-6755, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28819663

ABSTRACT

Mixtures of fumed fractal metal oxide nanoparticles (np's) dispersed in water, at a solution pH where one species is positively charged and the other is negatively charged, form yield stress gels at volume fractions as low as 1.5%, due to electrostatic heteroaggregation into networks as confirmed by small-angle neutron scattering. These gels exhibit a measurable yield stress and an apparent viscosity that follows a power law relationship with shear rate. Rotational and oscillatory shear rheology is presented for binary mixtures of fumed silica, fumed alumina, and fumed titania in aqueous dispersions. Gels were characterized at various particle concentrations, solution pHs, mixture ratios, and salt concentrations. The strength of the gel network, as evaluated by the storage modulus and yield stress, is maximized when the mixture contains a mixture of particles with an approximately equal, but opposite, number of charged groups.

4.
Langmuir ; 31(48): 13077-84, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26549532

ABSTRACT

Carbon nanotubes exhibit very unique properties in biphasic systems. Their interparticle attraction leads to reduced droplet coalescence rates and corresponding improvements in emulsion stability. Here we use covalent and noncovalent techniques to modify the hydrophilicity of multiwalled carbon nanotubes (MWCNTs) and study their resulting behavior at an oil-water interface. By using both paraffin wax/water and dodecane/water systems, the thickness of the layer of MWNTs at the interface and resulting emulsion stability are shown to vary significantly with the approach used to modify the MWNTs. Increased hydrophilicity of the MWNTs shifts the emulsions from water-in-oil to oil-in-water. The stability of the emulsion is found to correlate with the thickness of nanotubes populating the oil-water interface and relative strength of the carbon nanotube network. The addition of a surfactant decreases the thickness of nanotubes at the interface and enhances the overall interfacial area stabilized at the expense of increased droplet coalescence rates. To the best of our knowledge, this is the first time the interfacial thickness of modified carbon nanotubes has been quantified and correlated to emulsion stability.


Subject(s)
Emulsions/chemistry , Nanotubes, Carbon/chemistry , Surface-Active Agents/chemistry , Alkanes/chemistry , Hydrophobic and Hydrophilic Interactions , Water/chemistry
5.
Langmuir ; 30(22): 6384-8, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24826944

ABSTRACT

The adsorption of anionic, cationic, and nonionic surfactants was measured on high-surface area silica and alumina nanoparticles when in the presence of the proposed polyelectrolyte sacrificial agents. Surfactant adsorption was characterized using two types of adsorption isotherms: one with constant polymer concentration and varying surfactant concentration, and another with a varying polymer concentration and constant surfactant concentration. Polystyrenesulfonate and Polydiallyl dimethylammonium chloride were tested as potential sacrificial agents on alumina and silica, respectively. Each surfactant/polymer system was allowed to reach equilibrium and supernatant surfactant concentrations were measured. This information was then plotted in order to determine what, if any, effect the proposed sacrificial agent had on the equilibrium adsorption. Results indicate that both of these polymers can have a large effect on total surfactant adsorption at a variety of surfactant concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...