Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727354

ABSTRACT

Currently, a major challenge in material engineering is to develop a cell-safe biomaterial with significant utility in processing technology such as 3D bioprinting. The main goal of this work was to optimize the composition of a new graphene oxide (GO)-based bioink containing additional extracellular matrix (ECM) with unique properties that may find application in 3D bioprinting of biomimetic scaffolds. The experimental work evaluated functional properties such as viscosity and complex modulus, printability, mechanical strength, elasticity, degradation and absorbability, as well as biological properties such as cytotoxicity and cell response after exposure to a biomaterial. The findings demonstrated that the inclusion of GO had no substantial impact on the rheological properties and printability, but it did enhance the mechanical properties. This enhancement is crucial for the advancement of 3D scaffolds that are resilient to deformation and promote their utilization in tissue engineering investigations. Furthermore, GO-based hydrogels exhibited much greater swelling, absorbability and degradation compared to non-GO-based bioink. Additionally, these biomaterials showed lower cytotoxicity. Due to its properties, it is recommended to use bioink containing GO for bioprinting functional tissue models with the vascular system, e.g., for testing drugs or hard tissue models.

2.
Metabolites ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36676933

ABSTRACT

An analysis of exhaled breath enables specialists to noninvasively monitor biochemical processes and to determine any pathological state in the human body. Breath analysis holds the greatest potential to remold and personalize diagnostics; however, it requires a multidisciplinary approach and collaboration of many specialists. Despite the fact that breath is considered to be a less complex matrix than blood, it is not commonly used as a diagnostic and prognostic tool for early detection of disordered conditions due to its problematic sampling, analysis, and storage. This review is intended to determine, standardize, and marshal experimental strategies for successful, reliable, and especially, reproducible breath analysis.

3.
J Phys Chem B ; 121(39): 9169-9174, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28892627

ABSTRACT

The UVB irradiation of DNA labeled with 5-bromo-2'-deoxyuridine (BrdU) leads to single-strand breaks (SSBs) as a major photochemical damage. Some time ago, we demonstrated that SSB is a secondary damage forming due to thermal dissociation of 2'-deoxyribonolactone generated photochemically in DNA labeled with BrdU. For the first time, we study here the variation of the yield of UVB generated SSBs with the alteration of 3'-neighbor nucleobase of electron donor (2'-deoxyguanine (dG)) and acceptor (excited BrdU) in double-stranded DNA. We showed that the experimental damage yields can be explained by the calculated ionization potentials of dG and electron affinities of excited BrdU via a kinetic scheme based on the Marcus model of electron transfer (ET). Hence, our studies on the sequence dependence of photochemical damage in DNA labeled with BrdU constitute a further argument that photochemically generated SSBs occur as a result of long-range ET.


Subject(s)
Bromodeoxyuridine/radiation effects , DNA/radiation effects , Electrons , Light , DNA Damage/radiation effects , Electron Transport , Models, Biological
4.
J Photochem Photobiol B ; 167: 228-235, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28088103

ABSTRACT

The sensitizing propensity of radio-/photosensitizing nucleoside depends on DNA sequence surrounding a sensitizer. Therefore, in order to compare sensitizers with regard to their ability to induce a DNA damage one has to study the sequence dependence of damage yield. However, chemical synthesis of oligonucleotides labeled with sensitizing nucleosides is hindered due to the fact that a limited number of such nucleoside phosphoramidites are accessible. Here, we report on a chemically-enzymatic method, employing a DNA polymerase and ligase, that enables a modified nucleoside, in the form of its 5'-triphosphate, to be incorporated into DNA fragment in a pre-determined site. Using such a protocol two double-stranded DNA fragments - a long one, 75 base pairs (bp), and a short one, 30bp in length - were pin-point labeled with 5-bromodeoxyuridine. Four DNA polymerases together with DHPLC for the inspection of reaction progress were used to optimize the process under consideration. As an ultimate test showing that the product possessing an assumed nucleotide sequence was actually obtained, we irradiated the synthesized oligonucleotide with UVB photons and analyzed its photoreactivity with the LC-MS method. Our results prove that a general approach enabling precise labeling of DNA with any nucleoside modification processed by DNA polymerase and ligase has been worked out.


Subject(s)
DNA/chemical synthesis , Enzymes/chemistry , Light , Bromodeoxyuridine , Chromatography, High Pressure Liquid , DNA/radiation effects , DNA Damage , Mass Spectrometry , Polymerization
5.
Org Biomol Chem ; 14(39): 9331-9337, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27714271

ABSTRACT

The radiolysis of deoxygenated aqueous solution containing trimeric oligonucleotides labelled with iodinated pyrimidines and Tris-HCl as the hydroxyl radical scavenger leads to electron attachment to the halogenated bases that mainly results in single strand breaks. The iodinated trimers are 2-fold more sensitive to solvated electrons than the brominated oligonucleotides, which is explained by the barrier-free dissociation of the iodinated base anions. The present study fills the literature gap concerning the chemistry triggered by ionizing radiation in the iodinated pyrimidines incorporated into DNA.


Subject(s)
Oligonucleotides/chemistry , Oligonucleotides/radiation effects , Chromatography, High Pressure Liquid , DNA, Single-Stranded , Electrons , Hydroxyl Radical , Idoxuridine/analogs & derivatives , Idoxuridine/chemistry , Iodine/chemistry , Mass Spectrometry/methods , Pyrimidines/chemistry , Radiation, Ionizing
6.
J Pharm Biomed Anal ; 128: 480-484, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27371921

ABSTRACT

Real-time PCR (qPCR) - a modern methodology primarily used for studying gene expression has been employed for the quantitative assay of an important class of DNA damage - single strand breaks. These DNA lesions which may lead to highly cytotoxic double strand breaks were quantified in a model system where double stranded DNA was sensitized to UV photons by labeling with 5-bromo-2'-deoxyuridine. The amount of breaks formed due to irradiation with several doses of 320nm photons was assayed by two independent methods: LC-MS and qPCR. A very good agreement between the relative damage measured by the two completely different analytical tools proves the applicability of qPCR for the quantitative analysis of SSBs. Our results suggest that the popularity of the hitherto underestimated though accurate and site-specific technique of real-time PCR may increase in future DNA damage studies.


Subject(s)
DNA Breaks, Double-Stranded , Real-Time Polymerase Chain Reaction , Bromodeoxyuridine/pharmacology , Chromatography, Liquid , DNA Breaks, Double-Stranded/drug effects , DNA Breaks, Double-Stranded/radiation effects , Mass Spectrometry , Photosensitizing Agents/pharmacology , Ultraviolet Rays/adverse effects
7.
J Phys Chem B ; 119(26): 8227-38, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26061614

ABSTRACT

Hypoxia--a hallmark of solid tumors--makes hypoxic cells radioresistant. On the other hand, DNA, the main target of anticancer therapy, is not sensitive to the near UV photons and hydrated electrons, one of the major products of water radiolysis under hypoxic conditions. A possible way to overcome these obstacles to the efficient radio- and photodynamic therapy of cancer is to sensitize the cellular DNA to electrons and/or ultraviolet radiation. While incorporated into genomic DNA, modified nucleosides, 5-bromo-2'-deoxyuridine in particular, sensitize cells to both near-ultraviolet photons and γ rays. It is believed that, in both sensitization modes, the reactive nucleobase radical is formed as a primary product which swiftly stabilizes, leading to serious DNA damage, like strand breaks or cross-links. However, despite the apparent similarity, such radio- and photosensitization of DNA seems to be ruled by fundamentally different mechanisms. In this review, we demonstrate that the most important factors deciding on radiodamage to the labeled DNA are (i) the electron affinity (EA) of modified nucleoside (mNZ), (ii) the local surroundings of the label that significantly influences the EA of mNZ, and (iii) the strength of the chemical bond holding together the substituent and a nucleobase. On the other hand, we show that the UV damage to sensitized DNA is governed by long-range photoinduced electron transfer, the efficiency of which is controlled by local DNA sequences. A critical review of the literature mechanisms concerning both types of damage to the labeled biopolymer is presented. Ultimately, the perspectives of studies on DNA sensitization in the context of cancer therapy are discussed.


Subject(s)
DNA Damage/radiation effects , DNA/chemistry , Nucleosides/chemistry , Ultraviolet Rays , Bromodeoxyuridine , DNA Breaks/radiation effects , Electrons , Free Radicals/chemistry , Gamma Rays , Humans , Radiation, Ionizing
SELECTION OF CITATIONS
SEARCH DETAIL
...