Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 228: 113320, 2021 09.
Article in English | MEDLINE | ID: mdl-34153627

ABSTRACT

Transmission electron microscopy has become a major characterization tool with an ever increasing variety of methods being applied in a wide range of scientific fields. However, the probably most famous pitfall in related workflows is the preparation of high-quality electron-transparent lamellae enabling for extraction of valuable information. Particularly in the field of solid state physics and materials science, it often required to study the surface of a macroscopic specimen with plan-view orientation. Nevertheless, despite tremendous advances in instrumentation, i.e. focused ion beam, the yield of existing plan-view lamellae preparation techniques is relatively low compared to cross-sectional extraction methods. Furthermore, techniques relying on mechanical treatments, i.e. conventional preparation, compromise site-specifity. In this paper, we demonstrate that by combining a mechanical grinding step prior to backside lift-out in the focused ion beam plan-view lamellae preparation becomes increasingly easy. The suggested strategy combines site-specifity with micrometer precision as well as possible investigation of pristine surfaces with a field of view of several hundred square micrometers.

2.
Nature ; 591(7849): 225-228, 2021 03.
Article in English | MEDLINE | ID: mdl-33692556

ABSTRACT

Gravity is the weakest of all known fundamental forces and poses some of the most important open questions to modern physics: it remains resistant to unification within the standard model of physics and its underlying concepts appear to be fundamentally disconnected from quantum theory1-4. Testing gravity at all scales is therefore an important experimental endeavour5-7. So far, these tests have mainly involved macroscopic masses at the kilogram scale and beyond8. Here we show gravitational coupling between two gold spheres of 1 millimetre radius, thereby entering the regime of sub-100-milligram sources of gravity. Periodic modulation of the position of the source mass allows us to perform a spatial mapping of the gravitational force. Both linear and quadratic coupling are observed as a consequence of the nonlinearity of the gravitational potential. Our results extend the parameter space of gravity measurements to small, single source masses and low gravitational field strengths. Further improvements to our methodology will enable the isolation of gravity as a coupling force for objects below the Planck mass. This work opens the way to the unexplored frontier of microscopic source masses, which will enable studies of fundamental interactions9-11 and provide a path towards exploring the quantum nature of gravity12-15.

SELECTION OF CITATIONS
SEARCH DETAIL
...