Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Drug Metab Dispos ; 51(8): 1005-1015, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37142426

ABSTRACT

Pharmacokinetic variability in drug plasma exposure between different studies within the same species is not unexpected due to a variety of factors (such as differences in formulation, active pharmaceutical ingredient salt form and solid-state, genetic strain, sex, environmental, disease status, bioanalysis methods, circadian rhythms, etc.) although variability from within the same research group typically does not occur to a great degree because these variables are commonly controlled. Surprisingly, a pharmacology proof of concept study with a previously validated tool compound from the literature failed to show expected response in murine glucose-6-phosphate isomerase-induced arthritis model which was tied to compound plasma exposure unexpectedly 10-fold lower than exposure observed from early pharmacokinetic study confirming adequate exposure prior to proof of concept. A systematic series of studies were conducted to investigate causes for exposure difference between pharmacology and pharmacokinetic studies identifying the presence or absence of soy protein in animal chow as the causative variable. Cyp3a11 expression in intestine and liver was determined to increase in a time dependent manner in mice switched to diets containing soybean meal compared with mice on diets without soybean meal. The repeated pharmacology experiments using the soybean meal free diet achieved plasma exposures that were maintained above the EC50 and showed efficacy and proof of concept for the target. This effect was further confirmed with marker CYP3A4 substrates in follow on mouse studies. The role of soy protein containing diets on CYP expression necessitates the inclusion of controlling rodent diet as a variable for preventing possible exposure differences between studies. SIGNIFICANCE STATEMENT: The presence of soybean meal protein in murine diet increased clearance and decreased oral exposure for select cytochrome 3A4 substrates. Related effects were also observed on select liver enzyme expression.


Subject(s)
Diet , Soybean Proteins , Mice , Animals , Soybean Proteins/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Liver/metabolism , Intestines
2.
J Med Chem ; 64(1): 417-429, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33378180

ABSTRACT

Tumor necrosis factor α (TNFα) is a soluble cytokine that is directly involved in systemic inflammation through the regulation of the intracellular NF-κB and MAPK signaling pathways. The development of biologic drugs that inhibit TNFα has led to improved clinical outcomes for patients with rheumatoid arthritis and other chronic autoimmune diseases; however, TNFα has proven to be difficult to drug with small molecules. Herein, we present a two-phase, fragment-based drug discovery (FBDD) effort in which we first identified isoquinoline fragments that disrupt TNFα ligand-receptor binding through an allosteric desymmetrization mechanism as observed in high-resolution crystal structures. The second phase of discovery focused on the de novo design and optimization of fragments with improved binding efficiency and drug-like properties. The 3-indolinone-based lead presented here displays oral, in vivo efficacy in a mouse glucose-6-phosphate isomerase (GPI)-induced paw swelling model comparable to that seen with a TNFα antibody.


Subject(s)
Biological Products/chemical synthesis , Drug Design , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Administration, Oral , Allosteric Regulation , Animals , Arthritis, Rheumatoid/drug therapy , Autoimmune Diseases/drug therapy , Biological Products/pharmacology , Biological Products/therapeutic use , Ligands , Mice , Tumor Necrosis Factor-alpha/metabolism
3.
J Am Assoc Lab Anim Sci ; 53(3): 246-60, 2014 May.
Article in English | MEDLINE | ID: mdl-24827566

ABSTRACT

Environmental enrichment in rodents may improve animal well-being but can affect neurologic development, immune system function, and aging. We tested the hypothesis that wood block enrichment affects the interpretation of traditional and transcriptomic endpoints in an exploratory toxicology testing model using a well-characterized reference compound, cyclophosphamide. ANOVA was performed to distinguish effects of wood block enrichment separate from effects of 40 mg/kg cyclophosphamide treatment. Biologically relevant and statistically significant effects of wood block enrichment occurred only for body weight gain. ANOVA demonstrated the expected effects of cyclophosphamide on food consumption, spleen weight, and hematology. According to transcriptomic endpoints, cyclophosphamide induced fewer changes in gene expression in liver than in spleen. Splenic transcriptomic pathways affected by cyclophosphamide included: iron hemostasis; vascular tissue angiotensin system; hepatic stellate cell activation and fibrosis; complement activation; TGFß-induced hypertrophy and fibrosis; monocytes, macrophages, and atherosclerosis; and platelet activation. Changes in these pathways due to cyclophosphamide treatment were consistent with bone marrow toxicity regardless of enrichment. In a second study, neither enrichment nor type of cage flooring altered body weight or food consumption over a 28-d period after the first week. In conclusion, wood block enrichment did not interfere with a typical exploratory toxicology study; the effects of ingested wood on drug level kinetics may require further consideration.


Subject(s)
Antineoplastic Agents, Alkylating/administration & dosage , Cyclophosphamide/administration & dosage , Rats , Toxicology/methods , Administration, Oral , Animals , Animals, Laboratory , Body Weight/drug effects , Liver/drug effects , Male , Rats, Sprague-Dawley , Wood
4.
Xenobiotica ; 44(6): 531-40, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24479584

ABSTRACT

1. Metabolism and disposition of ABT-894 was investigated in hepatocytes, in mice and monkeys receiving [(14)C]ABT-894. 2. In hepatocytes, turnover rate of ABT-894 was slow in all species with more than 90% of parent remaining. M3 (carbamoyl glucuronide) and M6 (mono-oxidation) were detected across species. 3. ABT-894 showed species-specific disposition profiles. ABT-894 was primarily eliminated by renal secretion in mice. Whereas, monkey mainly cleared ABT-894 metabolically. 4. ABT-894 underwent two primary routes of metabolism in monkeys: N-carbamoyl glucuronidation to form M3 and oxidation product M1. M3 was the major metabolite in monkey excreta. M3 was observed in mice urine. Circulating levels of M3 in terms of M3/ABT-894 ratios were essentially absent in mice, but were high in monkeys. 5. Understanding the species difference in the clearance mechanism is the key to the accurate projection of the human clearance and preclinical safety assessment. Lack of species difference in the metabolism of ABT-894 in hepatocytes certainly creates a challenge in predicting its metabolism and pharmacokinetics in human. Based on available metabolism and pharmacokinetic data of ABT-894 in human, monkey is the preferred species in predicting human clearance since it presents a similar clearance mechanism from that observed in human.


Subject(s)
Azabicyclo Compounds/metabolism , Azabicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/metabolism , Bridged Bicyclo Compounds/pharmacokinetics , Cholinergic Agonists/metabolism , Cholinergic Agonists/pharmacokinetics , Neurons/metabolism , Pyridines/metabolism , Pyridines/pharmacokinetics , Receptors, Nicotinic/metabolism , Animals , Azabicyclo Compounds/blood , Azabicyclo Compounds/chemistry , Bridged Bicyclo Compounds/blood , Bridged Bicyclo Compounds/chemistry , Cholinergic Agonists/blood , Cholinergic Agonists/chemistry , Chromatography, High Pressure Liquid , Dogs , Gastrointestinal Absorption , Haplorhini , Hepatocytes/metabolism , Humans , Male , Mass Spectrometry , Metabolic Networks and Pathways , Mice , Pyridines/blood , Pyridines/chemistry , Rats, Sprague-Dawley , Receptors, Nicotinic/chemistry , Tissue Distribution
6.
Bioorg Med Chem ; 20(13): 4128-39, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22626552

ABSTRACT

A novel 4-aminocyclopentapyrrolidine series of N-type Ca(2+) channel blockers have been discovered. Enantioselective synthesis of the 4-aminocyclopentapyrrolidines was enabled using N-tert-butyl sulfinamide chemistry. SAR studies demonstrate selectivity over L-type Ca(2+) channels. N-type Ca(2+) channel blockade was confirmed using electrophysiological recording techniques. Compound 25 is an N-type Ca(2+) channel blocker that produces antinociception in inflammatory and nociceptive pain models without exhibiting cardiovascular or motor liabilities.


Subject(s)
Acetamides/chemical synthesis , Analgesics/chemical synthesis , Calcium Channel Blockers/chemical synthesis , Calcium Channels, N-Type/chemistry , Pyrrolidines/chemistry , Pyrrolidines/chemical synthesis , Acetamides/pharmacology , Acetamides/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Behavior, Animal/drug effects , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Calcium Channels, N-Type/metabolism , Disease Models, Animal , Male , Pain/drug therapy , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
7.
Eur J Pharmacol ; 684(1-3): 87-94, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22504024

ABSTRACT

Histamine H(3) receptor antagonists have been widely reported to improve performance in preclinical models of cognition, but more recently efficacy in pain models has also been described. Here, A-960656 ((R)-2-(2-(3-(piperidin-1-yl)pyrrolidin-1-yl)benzo[d]thiazol-6-yl)pyridazin-3(2H)-one) was profiled as a new structural chemotype. A-960656 was potent in vitro in histamine H(3) receptor binding assays (rat K(i)=76 nM, human K(i)=21 nM), and exhibited functional antagonism in blocking agonist-induced [(35)S]GTPγS binding (rat H(3) K(b)=107 nM, human H(3) K(b)=22 nM), and was highly specific for H(3) receptors in broad screens for non-H(3) sites. In a spinal nerve ligation model of neuropathic pain in rat, oral doses of 1 and 3mg/kg were effective 60 min post dosing with an ED(50) of 2.17 mg/kg and a blood EC(50) of 639 ng/ml. In a model of osteoarthritis pain, oral doses of 0.1, 0.3, and 1mg/kg were effective 1h post dosing with an ED(50) of 0.52 mg/kg and a blood EC(50) of 233 ng/ml. The antinociceptive effect of A-960656 in both pain models was maintained after sub-chronic dosing up to 12 days. A-960656 had excellent rat pharmacokinetics (t(1/2)=1.9h, 84% oral bioavailability) with rapid and efficient brain penetration, and was well tolerated in CNS behavioral safety screens. In summary, A-960656 has properties well suited to probe the pharmacology of histamine H(3) receptors in pain. Its potency and efficacy in animal pain models provide support to the notion that histamine H(3) receptor antagonists are effective in attenuating nociceptive processes.


Subject(s)
Benzothiazoles/pharmacology , Histamine H3 Antagonists/pharmacology , Neuralgia/drug therapy , Osteoarthritis/drug therapy , Pyridazines/pharmacology , Receptors, Histamine H3/metabolism , Animals , Benzothiazoles/adverse effects , Benzothiazoles/metabolism , Benzothiazoles/pharmacokinetics , Cell Membrane Permeability , Cytochrome P-450 Enzyme Inhibitors , Disease Models, Animal , Dogs , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , HEK293 Cells , Heart/drug effects , Histamine H3 Antagonists/adverse effects , Histamine H3 Antagonists/metabolism , Histamine H3 Antagonists/pharmacokinetics , Humans , Male , Osteoarthritis, Knee/drug therapy , Pyridazines/adverse effects , Pyridazines/metabolism , Pyridazines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Substrate Specificity
8.
Bioorg Med Chem Lett ; 22(4): 1716-8, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22277280

ABSTRACT

A novel series of diphenyl lactam containing calcium channel blockers is described. Extensive SAR studies resulted in compounds with low molar activity and good plasma exposure after oral dosing. Compounds 2, 6 and 7 demonstrated significant efficacy in the capsaicin model of secondary hyperalgesia following oral administration.


Subject(s)
Biphenyl Compounds/chemical synthesis , Calcium Channel Blockers/chemical synthesis , Calcium Channels, N-Type/metabolism , Drug Discovery , Lactams/chemical synthesis , Administration, Oral , Animals , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacokinetics , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacokinetics , Inhibitory Concentration 50 , Lactams/chemistry , Lactams/pharmacokinetics , Molecular Structure , Piperazines/chemistry , Rats , Solubility
10.
Brain Res ; 1354: 74-84, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20682302

ABSTRACT

The histamine H(3) receptor is predominantly expressed in the central nervous system and plays a role in diverse physiological mechanisms. In the present study, the effects of GSK189254, a potent and selective H(3) antagonist, were characterized in preclinical pain models in rats. Systemic GSK189254 produced dose-dependent efficacy (ED(50)=0.77 mg/kg i.p.) in a rat model of monoiodoacetate (MIA) induced osteoarthritic (OA) pain as evaluated by hindlimb grip force. The role of H(3) receptors in regulating pain perception was further demonstrated using other structurally distinct H(3) antagonists. GSK189254 also displayed efficacy in a rat surrogate model indicative of central sensitization, namely phase 2 response of formalin-induced flinching, and attenuated tactile allodynia in the spinal nerve ligation model of neuropathic pain (ED(50)=1.5mg/kg i.p.). In addition, GSK189254 reversed persistent (CFA) (ED(50)=2.1mg/kg i.p,), whereas was ineffective in acute (carrageenan) inflammatory pain. When administered intrathecally (i.t.) to the lumbar spinal cord, GSK189254 produced robust effects in relieving the OA pain (ED(50)=0.0027 mg/kg i.t.). The systemic GSK189254 effect was completely reversed by the alpha-adrenergic receptor antagonist phentolamine (i.p. and i.t.) but not by the opioid receptor antagonist naloxone (i.p.). Furthermore, the i.t. GSK189254 effect was abolished when co-administered with phentolamine (i.t.). These results suggest that the spinal cord is an important site of action for H(3) antagonism and the effect can be associated with activation of the noradrenergic system. Our data also provide support that selective H(3) antagonists may represent a class of agents for the treatment of pain disorders.


Subject(s)
Histamine H3 Antagonists/pharmacology , Neurons/drug effects , Norepinephrine/metabolism , Pain Measurement/drug effects , Pain/drug therapy , Receptors, Histamine H3/metabolism , Adrenergic alpha-Antagonists/pharmacology , Analysis of Variance , Animals , Benzazepines/pharmacology , Dose-Response Relationship, Drug , Formaldehyde , Hand Strength , Injections, Spinal , Male , Motor Activity/drug effects , Neurons/metabolism , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Pain/chemically induced , Pain/metabolism , Pain Perception/drug effects , Phentolamine/pharmacology , Rats , Rats, Sprague-Dawley
11.
Pharmacol Biochem Behav ; 95(1): 41-50, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20004681

ABSTRACT

The histamine H(4) receptor (H(4)R) is expressed primarily on cells involved in inflammation and immune responses. To determine the potential role of H(4)R in pain transmission, the effects of JNJ7777120, a potent and selective H(4) antagonist, were characterized in preclinical pain models. Administration of JNJ7777120 fully blocked neutrophil influx observed in a mouse zymosan-induced peritonitis model (ED(50)=17 mg/kg s.c., 95% CI=8.5-26) in a mast cell-dependent manner. JNJ7777120 potently reversed thermal hyperalgesia observed following intraplantar carrageenan injection of acute inflammatory pain (ED(50)=22 mg/kg i.p., 95% CI=10-35) in rats and significantly decreased the myeloperoxide activity in the carrageenan-injected paw. In contrast, no effects were produced by either H(1)R antagonist diphenhydramine, H(2)R antagonists ranitidine, or H(3)R antagonist ABT-239. JNJ7777120 also exhibited robust anti-nociceptive activity in persistent inflammatory (CFA) pain with an ED(50) of 29 mg/kg i.p. (95% CI=19-40) and effectively reversed monoiodoacetate (MIA)-induced osteoarthritic joint pain. This compound also produced dose-dependent anti-allodynic effects in the spinal nerve ligation (ED(50)=60 mg/kg) and sciatic nerve constriction injury (ED(50)=88 mg/kg) models of chronic neuropathic pain, as well as in a skin-incision model of acute post-operative pain (ED(50)=68 mg/kg). In addition, the analgesic effects of JNJ7777120 were maintained following repeated administration and were evident at the doses that did not cause neurologic deficits in rotarod test. Our results demonstrate that selective blockade of H(4) receptors in vivo produces significant anti-nociception in animal models of inflammatory and neuropathic pain.


Subject(s)
Analgesics/pharmacology , Disease Models, Animal , Inflammation/drug therapy , Peripheral Nervous System Diseases/drug therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Analgesics/therapeutic use , Animals , Male , Mice , Mice, Inbred BALB C , Radioligand Assay , Rats , Receptors, Histamine , Receptors, Histamine H4
12.
J Med Chem ; 52(15): 4640-9, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19588934

ABSTRACT

A new histamine H3 receptor (H3R) antagonist chemotype 1 was designed by combining key pharmacophoric elements from two different precursor structural series and then simplifying and optimizing the resulting combined structural features. First, analogues were made based on a previously identified conessine-based H3R antagonist series. While the first analogues 11 and 15 showed no antagonistic activity to H3R, the mere addition of a key moiety found in the reference compound 7 (ABT-239) elevated the series to high potency at H3R. The hybrid structure (16b) was judged too synthetically demanding to enable an extensive SAR study, thus forcing a strategy to simplify the chemical structure. The resulting (3aR,6aR)-5-alkyl-1-aryl-octahydropyrrolo[3,4-b]pyrrole series proved to be highly potent, as exemplified by 17a having a human H3 K(i) of 0.54 nM, rat H3 K(i) of 4.57 nM, and excellent pharmacokinetics (PK) profile in rats (oral bioavailability of 39% and t(1/2) of 2.4 h).


Subject(s)
Histamine H3 Antagonists/chemical synthesis , Pyrroles/chemical synthesis , Animals , Drug Design , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , Histamine H3 Antagonists/pharmacokinetics , Histamine H3 Antagonists/pharmacology , Humans , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Structure-Activity Relationship
13.
J Med Chem ; 51(22): 7094-8, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-18983139

ABSTRACT

cis-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2-amine, 4 (A-987306) is a new histamine H(4) antagonist. The compound is potent in H(4) receptor binding assays (rat H(4), K(i) = 3.4 nM, human H(4) K(i) = 5.8 nM) and demonstrated potent functional antagonism in vitro at human, rat, and mouse H(4) receptors in cell-based FLIPR assays. Compound 4 also demonstrated H(4) antagonism in vivo in mice, blocking H(4)-agonist induced scratch responses, and showed anti-inflammatory activity in mice in a peritonitis model. Most interesting was the high potency and efficacy of this compound in blocking pain responses, where it showed an ED(50) of 42 mumol/kg (ip) in a rat post-carrageenan thermal hyperalgesia model of inflammatory pain.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzofurans/pharmacology , Hyperalgesia/drug therapy , Pain/prevention & control , Quinazolines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Carrageenan , Disease Models, Animal , Drug Design , Drug Evaluation, Preclinical , Humans , Hyperalgesia/chemically induced , Ligands , Mice , Molecular Structure , Pain/physiopathology , Peritonitis/drug therapy , Quinazolines/chemical synthesis , Quinazolines/chemistry , Rats , Receptors, Histamine , Receptors, Histamine H4 , Stereoisomerism , Structure-Activity Relationship
14.
J Med Chem ; 51(20): 6571-80, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18811133

ABSTRACT

A series of 2-aminopyrimidines was synthesized as ligands of the histamine H4 receptor (H4R). Working in part from a pyrimidine hit that was identified in an HTS campaign, SAR studies were carried out to optimize the potency, which led to compound 3, 4- tert-butyl-6-(4-methylpiperazin-1-yl)pyrimidin-2-ylamine. We further studied this compound by systematically modifying the core pyrimidine moiety, the methylpiperazine at position 4, the NH2 at position 2, and positions 5 and 6 of the pyrimidine ring. The pyrimidine 6 position benefited the most from this optimization, especially in analogs in which the 6- tert-butyl was replaced with aromatic and secondary amine moieties. The highlight of the optimization campaign was compound 4, 4-[2-amino-6-(4-methylpiperazin-1-yl)pyrimidin-4-yl]benzonitrile, which was potent in vitro and was active as an anti-inflammatory agent in an animal model and had antinociceptive activity in a pain model, which supports the potential of H 4R antagonists in pain.


Subject(s)
Histamine Antagonists/chemical synthesis , Histamine Antagonists/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Receptors, Histamine/metabolism , Animals , Biomarkers , Histamine Antagonists/chemistry , Humans , Hyperplasia/chemically induced , Hyperplasia/prevention & control , Ligands , Locomotion/drug effects , Mice , Molecular Structure , Pyrimidines/chemistry , Rats , Structure-Activity Relationship , Substrate Specificity
15.
J Med Chem ; 51(20): 6547-57, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18817367

ABSTRACT

A new structural class of histamine H 4 receptor antagonists (6-14) was designed based on rotationally restricted 2,4-diaminopyrimidines. Series compounds showed potent and selective in vitro H 4 antagonism across multiple species, good CNS penetration, improved PK properties compared to reference H 4 antagonists, functional H 4 antagonism in cellular and in vivo pharmacological assays, and in vivo anti-inflammatory and antinociceptive efficacy. One compound, 10 (A-943931), combined the best features of the series in a single molecule and is an excellent tool compound to probe H 4 pharmacology. It is a potent H 4 antagonist in functional assays across species (FLIPR Ca (2+) flux, K b < 5.7 nM), has high (>190x) selectivity for H 4, and combines good PK in rats and mice (t 1/2 of 2.6 and 1.6 h, oral bioavailability of 37% and 90%) with anti-inflammatory activity (ED 50 = 37 micromol/kg, mouse) and efficacy in pain models (thermal hyperalgesia, ED 50 = 72 micromol/kg, rat).


Subject(s)
Amines/chemistry , Anti-Inflammatory Agents/chemical synthesis , Histamine Antagonists/chemical synthesis , Histamine Antagonists/therapeutic use , Pain/drug therapy , Pyrimidines/chemical synthesis , Receptors, Histamine/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/classification , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Histamine Antagonists/chemistry , Histamine Antagonists/classification , Ligands , Mice , Molecular Structure , Pyrimidines/chemistry , Pyrimidines/classification , Pyrimidines/therapeutic use , Rats
16.
J Med Chem ; 51(17): 5423-30, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18683917

ABSTRACT

The naturally occurring alkaloid, conessine (6), was discovered to bind to histamine H3 receptors in a radioligand-based high-throughput screen. Conessine displayed high affinity at both rat and human H3 receptors (pKi = 7.61 and 8.27) and generally high selectivity against other sites, including histamine receptors H1, H2, and H4. Conessine was found to efficiently penetrate the CNS and reach very high brain concentrations. Although the very slow CNS clearance and strong binding to adrenergic receptors discouraged focus on conessine itself for further development, its potency and novel steroid-based skeleton motivated further chemical investigation. Modification based on introducing diversity at the 3-nitrogen position generated a new series of H3 antagonists with higher in vitro potency, improved target selectivity, and more favorable drug-like properties. One optimized analogue (13c) was examined in detail and was found to be efficacious in animal behavioral model of cognition.


Subject(s)
Alkaloids/pharmacokinetics , Histamine Antagonists/pharmacokinetics , Receptors, Histamine H3/drug effects , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Behavior, Animal/drug effects , Brain/metabolism , Brain Chemistry , Cognition/drug effects , Histamine Antagonists/chemistry , Histamine Antagonists/pharmacology , Humans , Radioligand Assay , Rats
17.
J Med Chem ; 51(3): 392-5, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18183945

ABSTRACT

Vanilloid receptor TRPV1 is a cation channel that can be activated by a wide range of noxious stimuli, including capsaicin, acid, and heat. Blockade of TRPV1 activation by selective antagonists is under investigation by several pharmaceutical companies in an effort to identify novel agents for pain management. Here we report that replacement of substituted benzyl groups by an indan rigid moiety in a previously described N-indazole- N'-benzyl urea series led to a number of TRPV1 antagonists with significantly increased in vitro potency and enhanced drug-like properties. Extensive evaluation of pharmacological, pharmacokinetic, and toxicological properties of synthesized analogs resulted in identification of ( R)-7 ( ABT-102). Both the analgesic activity and drug-like properties of ( R)-7 support its advancement into clinical pain trials.


Subject(s)
Analgesics/chemical synthesis , Indazoles/chemical synthesis , Indenes/chemical synthesis , TRPV Cation Channels/antagonists & inhibitors , Urea/analogs & derivatives , Urea/chemical synthesis , Administration, Oral , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Biological Availability , Dogs , Haplorhini , Humans , In Vitro Techniques , Indazoles/pharmacokinetics , Indazoles/pharmacology , Indenes/pharmacokinetics , Indenes/pharmacology , Microsomes, Liver/metabolism , Pain/drug therapy , Pain/etiology , Rats , Stereoisomerism , Structure-Activity Relationship , Urea/pharmacokinetics , Urea/pharmacology
18.
J Med Chem ; 50(22): 5439-48, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17918921

ABSTRACT

A new structural series of histamine H3 receptor antagonist was developed. The new compounds are based on a quinoline core, appended with a required basic aminoethyl moiety, and with potency- and property-modulating heterocyclic substituents. The analogs have nanomolar and subnanomolar potency for the rat and human H3R in various in vitro assays, including radioligand competition binding as well as functional tests of H3 receptor-mediated calcium mobilization and GTPgammaS binding. The compounds possessed favorable drug-like properties, such as good PK, CNS penetration, and moderate protein binding across species. Several compounds were found to be efficacious in animal behavioral models of cognition and attention. Further studies on the pharmaceutic properties of this series of quinolines discovered a potential problem with photochemical instability, an issue which contributed to the discontinuation of this series from further development.


Subject(s)
Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Quinolines/chemical synthesis , Receptors, Histamine H3/metabolism , Animals , Attention/drug effects , Avoidance Learning/drug effects , Blood Proteins/metabolism , Blood-Brain Barrier/metabolism , Calcium/metabolism , Cell Line , Cognition/drug effects , Dogs , Drug Inverse Agonism , Drug Stability , Haplorhini , Humans , Protein Binding , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Quinolines/pharmacokinetics , Quinolines/pharmacology , Radioligand Assay , Rats , Rats, Inbred SHR , Recognition, Psychology/drug effects , Social Behavior , Stereoisomerism , Structure-Activity Relationship , Tissue Distribution
19.
J Med Chem ; 50(15): 3651-60, 2007 Jul 26.
Article in English | MEDLINE | ID: mdl-17583335

ABSTRACT

The synthesis and structure-activity relationship of 1-(aryl)-3-(4-(amino)benzyl)urea transient receptor potential vanilloid 1 (TRPV1) antagonists are described. A variety of cyclic amine substituents are well tolerated at the 4-position of the benzyl group on compounds containing either an isoquinoline or indazole heterocyclic core. These compounds are potent antagonists of capsaicin activation of the TRPV1 receptor in vitro. Analogues, such as compound 45, have been identified that have good in vivo activity in animal models of pain. Further optimization of 45 resulted in compound 58 with substantially improved microsome stability and oral bioavailability, as well as in vivo activity.


Subject(s)
Analgesics/chemical synthesis , Indazoles/chemical synthesis , Phenylurea Compounds/chemical synthesis , TRPV Cation Channels/antagonists & inhibitors , Urea/analogs & derivatives , Administration, Oral , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Biological Availability , Dogs , Drug Stability , Humans , In Vitro Techniques , Indazoles/pharmacokinetics , Indazoles/pharmacology , Isoquinolines/chemical synthesis , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Microsomes, Liver/metabolism , Phenylurea Compounds/pharmacokinetics , Phenylurea Compounds/pharmacology , Rats , Structure-Activity Relationship , Urea/chemical synthesis , Urea/pharmacokinetics , Urea/pharmacology
20.
Bioorg Med Chem Lett ; 17(14): 3894-9, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17507218

ABSTRACT

SAR studies for N-aryl-N'-benzyl urea class of TRPV1 antagonists have been extended to cover alpha-benzyl alkylation. Alkylated compounds showed weaker in vitro potencies in blocking capsaicin activation of TRPV1 receptor, but possessed improved pharmacokinetic properties. Further structural manipulations that included replacement of isoquinoline core with indazole and isolation of single enantiomer led to TRPV1 antagonists like (R)-16a with superior pharmacokinetic properties and greater potency in animal model of inflammatory pain.


Subject(s)
Analgesics/pharmacology , Inflammation/drug therapy , Models, Biological , Pain/drug therapy , TRPV Cation Channels/antagonists & inhibitors , Urea/pharmacology , Analgesics/pharmacokinetics , Analgesics/therapeutic use , Animals , Methylation , Rats , Urea/pharmacokinetics , Urea/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...