Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Radiat Biol ; 80(1): 11-20, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14761846

ABSTRACT

PURPOSE: To investigate the effect of 2450 MHz pulsed-wave microwaves on the induction of DNA damage in brain cells of exposed rats and to discover whether proteinase K is needed to detect DNA damage in the brain cells of rats exposed to 2450 MHz microwaves. MATERIALS AND METHODS: Sprague-Dawley rats were exposed to 2450 MHz pulsed-wave microwaves and sacrificed 4 h after a 2-h exposure. Rats irradiated whole-body with 1 Gy (137)Cs were included as positive controls. DNA damage was assayed by two variants of the alkaline comet assay on separate aliquots of the same cell preparation. RESULTS: Significant DNA damage was observed in the rat brain cells of rats exposed to gamma-rays using both versions of the alkaline comet assay independent of the presence or absence of proteinase K. However, neither version of the assay could detect any difference in comet length and/or normalized comet moment between sham- and 2450 MHz pulsed-wave microwave-exposed rats, regardless of the inclusion or omission of proteinase K in the comet assay. CONCLUSIONS: No DNA damage in brain cells was detected following exposure of rats to 2450 MHz microwaves pulsed-wave at a specific absorption rate of 1.2 W kg(-1) regardless of whether or not proteinase K was included in the assay. Thus, the results support the conclusion that low-level 2450 MHz pulsed-wave microwave exposures do not induce DNA damage detectable by the alkaline comet assay.


Subject(s)
Brain/radiation effects , Comet Assay/methods , DNA Damage , DNA/radiation effects , Dose-Response Relationship, Radiation , Microwaves , Neurons/radiation effects , Animals , Brain/drug effects , Cells, Cultured , Comet Assay/instrumentation , DNA/drug effects , Endopeptidase K/pharmacology , Gamma Rays , Male , Neurons/drug effects , Radiation Dosage , Radiometry , Rats , Rats, Sprague-Dawley , Whole-Body Irradiation
2.
Radiat Res ; 161(2): 201-14, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14731069

ABSTRACT

In vitro experiments were performed to determine whether 2450 MHz microwave radiation induces alkali-labile DNA damage and/or DNA-protein or DNA-DNA crosslinks in C3H 10T(1/2) cells. After a 2-h exposure to either 2450 MHz continuous-wave (CW) microwaves at an SAR of 1.9 W/kg or 1 mM cisplatinum (CDDP, a positive control for DNA crosslinks), C3H 10T(1/2) cells were irradiated with 4 Gy of gamma rays ((137)Cs). Immediately after gamma irradiation, the single-cell gel electrophoresis assay was performed to detect DNA damage. For each exposure condition, one set of samples was treated with proteinase K (1 mg/ml) to remove any possible DNA-protein crosslinks. To measure DNA-protein crosslinks independent of DNA-DNA crosslinks, we quantified the proteins that were recovered with DNA after microwave exposure, using CDDP and gamma irradiation, positive controls for DNA-protein crosslinks. Ionizing radiation (4 Gy) induced significant DNA damage. However, no DNA damage could be detected after exposure to 2450 MHz CW microwaves alone. The crosslinking agent CDDP significantly reduced both the comet length and the normalized comet moment in C3H 10T(1/2) cells irradiated with 4 Gy gamma rays. In contrast, 2450 MHz microwaves did not impede the DNA migration induced by gamma rays. When control cells were treated with proteinase K, both parameters increased in the absence of any DNA damage. However, no additional effect of proteinase K was seen in samples exposed to 2450 MHz microwaves or in samples treated with the combination of microwaves and radiation. On the other hand, proteinase K treatment was ineffective in restoring any migration of the DNA in cells pretreated with CDDP and irradiated with gamma rays. When DNA-protein crosslinks were specifically measured, we found no evidence for the induction of DNA-protein crosslinks or changes in amount of the protein associated with DNA by 2450 MHz CW microwave exposure. Thus 2-h exposures to 1.9 W/ kg of 2450 MHz CW microwaves did not induce measurable alkali-labile DNA damage or DNA-DNA or DNA-protein crosslinks.


Subject(s)
DNA Damage , DNA-Binding Proteins/radiation effects , DNA/radiation effects , Fibroblasts/metabolism , Fibroblasts/radiation effects , Gamma Rays , Microwaves , Radiation Tolerance/radiation effects , Alkalies/metabolism , Animals , Cells, Cultured , Cisplatin/pharmacology , Comet Assay , Cross-Linking Reagents/pharmacology , DNA/drug effects , DNA/metabolism , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Radiation , Endopeptidase K/pharmacology , Fibroblasts/drug effects , Mice , Mice, Inbred C3H , Protein Binding/radiation effects
3.
J Exp Biol ; 204(Pt 8): 1381-9, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11273800

ABSTRACT

The long rostrum of the paddlefish Polyodon spathula supports an extensive array of ampullary electroreceptors and has been proposed to function as an antenna for detecting planktonic prey. Evidence in support of this hypothesis is presented in experiments that preclude the use of other sensory mechanisms for plankton detection. Paddlefish swimming in a recirculating observation chamber are shown to feed normally in the dark when prey-related chemical and hydrodynamic sensory cues are masked or attenuated. Specifically, we demonstrate that the spatial distribution of plankton captured by paddlefish is little changed when the plankton are individually encapsulated in agarose, when a high background concentration of plankton extract is added to the chamber, when the nares are plugged and under turbulent water flow conditions. Paddlefish also discriminate between encapsulated plankton and 'empty' agarose particles of the same size. Although capture distributions differed somewhat under certain conditions, the general pattern and effectiveness of prey capture were not disrupted by these procedures. These results support the conclusion that paddlefish, as zooplanktivores, rely on their passive electric sense for prey detection.


Subject(s)
Fishes/physiology , Plankton , Sensory Receptor Cells/physiology , Animals , Chemoreceptor Cells/physiology , Daphnia , Electricity , Feeding Behavior , Mechanoreceptors/physiology , Predatory Behavior , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL