Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 199(4): 831-843, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35974110

ABSTRACT

Alpine plants in Australia are increasingly exposed to more frequent drought and heatwaves, with significant consequences for physiological stress responses. Acclimation is a critical feature that allows plants to improve tolerance to environmental extremes by directly altering their physiology or morphology. Yet it is unclear how plant performance, tolerance, and recovery are affected when heat and water stress co-occur, and whether prior exposure affects responses to subsequent climate extremes. We grew a common alpine grass species under high or low watering treatments for three weeks before exposure to either none, one, or two heat stress events. We determined photosynthetic heat and freezing tolerance (LT50, mean temperature causing 50% irreversible damage to photosystem II) and growth. Physiological adjustments to low watering, including more negative water potentials and reduced growth, were also characterised by improved tolerance to high and low-temperature extremes. Shifts to higher heat tolerance were also evident with increasing exposure to heat stress events, though freezing tolerance was not affected. Acclimation effects were mostly short-term, however; prior exposure to heat and/or water stress had little to no effect on growth and thermal tolerance following the six-week recovery period. We conclude that rapid acclimation to water and heat stress that co-occur during summer enhances the capacity of alpine plants to tolerate increasingly frequent temperature extremes.


Subject(s)
Dehydration , Poaceae , Acclimatization , Droughts , Freezing
2.
Biol Rev Camb Philos Soc ; 96(3): 976-998, 2021 06.
Article in English | MEDLINE | ID: mdl-33561321

ABSTRACT

Biodiversity faces many threats and these can interact to produce outcomes that may not be predicted by considering their effects in isolation. Habitat loss and fragmentation (hereafter 'fragmentation') and altered fire regimes are important threats to biodiversity, but their interactions have not been systematically evaluated across the globe. In this comprehensive synthesis, including 162 papers which provided 274 cases, we offer a framework for understanding how fire interacts with fragmentation. Fire and fragmentation interact in three main ways: (i) fire influences fragmentation (59% of 274 cases), where fire either destroys and fragments habitat or creates and connects habitat; (ii) fragmentation influences fire (25% of cases) where, after habitat is reduced in area and fragmented, fire in the landscape is subsequently altered because people suppress or ignite fires, or there is increased edge flammability or increased obstruction to fire spread; and (iii) where the two do not influence each other, but fire interacts with fragmentation to affect responses like species richness, abundance and extinction risk (16% of cases). Where fire and fragmentation do influence each other, feedback loops are possible that can lead to ecosystem conversion (e.g. forest to grassland). This is a well-documented threat in the tropics but with potential also to be important elsewhere. Fire interacts with fragmentation through scale-specific mechanisms: fire creates edges and drives edge effects; fire alters patch quality; and fire alters landscape-scale connectivity. We found only 12 cases in which studies reported the four essential strata for testing a full interaction, which were fragmented and unfragmented landscapes that both span contrasting fire histories, such as recently burnt and long unburnt vegetation. Simulation and empirical studies show that fire and fragmentation can interact synergistically, multiplicatively, antagonistically or additively. These cases highlight a key reason why understanding interactions is so important: when fire and fragmentation act together they can cause local extinctions, even when their separate effects are neutral. Whether fire-fragmentation interactions benefit or disadvantage species is often determined by the species' preferred successional stage. Adding fire to landscapes generally benefits early-successional plant and animal species, whereas it is detrimental to late-successional species. However, when fire interacts with fragmentation, the direction of effect of fire on a species could be reversed from the effect expected by successional preferences. Adding fire to fragmented landscapes can be detrimental for species that would normally co-exist with fire, because species may no longer be able to disperse to their preferred successional stage. Further, animals may be attracted to particular successional stages leading to unexpected responses to fragmentation, such as higher abundance in more isolated unburnt patches. Growing human populations and increasing resource consumption suggest that fragmentation trends will worsen over coming years. Combined with increasing alteration of fire regimes due to climate change and human-caused ignitions, interactions of fire with fragmentation are likely to become more common. Our new framework paves the way for developing a better understanding of how fire interacts with fragmentation, and for conserving biodiversity in the face of these emerging challenges.


Subject(s)
Biodiversity , Ecosystem , Animals , Climate Change , Forests , Humans , Plants
3.
AoB Plants ; 10(3): ply032, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29942459

ABSTRACT

Nutrient cycling is greatly influenced by dominant plants that contribute high amounts of leaf litter to soils; however, less-dominant and rare species can play keystone roles in nutrient cycling if they have unique nutrient acquisition traits and provide high-quality litter. In many parts of the world, wildfire is likely to become more frequent and intense under a changing climate. The effect this will have on plant rarity and on species with unique nutrient acquisition traits, and thus nutrient cycling, remains poorly understood. Working within an Australian box-ironbark forest, we determined if a relationship existed between species rarity and the uniqueness of their leaf nutrient profiles, and if this relationship changed after prescribed burning. We created an index of species rarity from a data set of woody perennial species abundance in areas before and after autumn or spring burns, or left unburnt. We created indices of uniqueness for the leaf nutrient profiles of 42 woody perennial species occurring in the ecosystem, based on amounts of six macronutrients and four micronutrients found in fresh and senesced leaves of each species. Five nutrient acquisition strategies (mycorrhizal, N-fixing, carnivorous, hemiparasitic and proteoid roots) were represented in the data set. There was no community-wide relationship between rarity and uniqueness of leaf nutrient profiles, and this did not change as a result of fire. However, two hemiparasitic species were relatively rare in the ecosystem studied, and differed greatly from other species due to high K and P in senesced leaves. Thus, some of the rarest species, such as hemiparasites, can be functionally unique. Understanding the functional characteristics of rare species is important so that unique functional contributors can be identified and conserved to prevent local extinction.

4.
Ecol Evol ; 8(3): 1714-1725, 2018 02.
Article in English | MEDLINE | ID: mdl-29435246

ABSTRACT

Rare species can play important functional roles, but human-induced changes to disturbance regimes, such as fire, can inadvertently affect these species. We examined the influence of prescribed burns on the recruitment and diversity of plant species within a temperate forest in southeastern Australia, with a focus on species that were rare prior to burning. Floristic composition was compared among plots in landscapes before and after treatment with prescribed burns differing in the extent of area burnt and season of burn (before-after, control-impact design). Floristic surveys were conducted before burns, at the end of a decade of drought, and 3 years postburn. We quantified the effect of prescribed burns on species grouped by their frequency within the landscape before burning (common, less common, and rare) and their life-form attributes (woody perennials, perennial herbs or geophytes, and annual herbs). Burn treatment influenced the response of rare species. In spring-burn plots, the recruitment of rare annual herbs was promoted, differentiating this treatment from both autumn-burn and unburnt plots. In autumn-burn plots, richness of rare species increased across all life-form groups, although composition remained statistically similar to control plots. Richness of rare woody perennials increased in control plots. For all other life-form and frequency groups, the floristic composition of landscapes changed between survey years, but there was no effect of burn treatment, suggesting a likely effect of rainfall on species recruitment. A prescribed burn can increase the occurrence of rare species in a landscape, but burn characteristics can affect the promotion of different life-form groups and thus affect functional diversity. Drought-breaking rain likely had an overarching effect on floristic composition during our study, highlighting that weather can play a greater role in influencing recruitment and diversity in plant communities than a prescribed burn.

5.
Int J Phytoremediation ; 12(1): 34-53, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20734627

ABSTRACT

Plants species have been shown to improve the performance of stormwater biofiltration systems, particularly in removal of N and P. Recent research has shown that plants vary in their contribution to pollutant removal but little is known about the type of plant that is best suited to use in biofilters in terms of survival, growth rate, and performance. In this study, growth responses of 20 species to applications of semi-synthetic stormwater were measured, and the roles of key plant traits in removal of N, P, and several metals were investigated. There was no evidence of negative effects of stormwater application on plant growth, and plant traits, particularly root traits, were strongly correlated negatively with N and P concentrations of effluent stormwater. The most common and strong contributors to N and P removal appeared to be the length of the longest root, rooting depth, total root length, and root mass. The plants that made the strongest contribution to pollutant removal, e.g, Carex appressa, combined these traits with high growth rates. Investigation of other plant traits (e.g, physiology), causal mechanisms, and effects of more complex planting environments (e.g, species mixtures) should further guide the selection of plants to enhance performance of biofiltration systems.


Subject(s)
Cyclonic Storms , Filtration/methods , Plants/anatomy & histology , Quantitative Trait, Heritable , Water Pollutants, Chemical/isolation & purification , Biodegradation, Environmental , Biomass , Nitrogen/metabolism , Phosphorus/metabolism , Plant Development , Plant Roots/anatomy & histology , Plant Roots/metabolism , Plants/metabolism , Principal Component Analysis , Waste Disposal, Fluid
6.
Water Res ; 42(4-5): 893-902, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17915283

ABSTRACT

Biofiltration systems use vegetation to improve efficiency of pollutant removal from stormwater, but little is known of how plants vary in their capacity to improve biofilter effectiveness. We used a pot trial of 20 Australian species to investigate how species vary in the removal of pollutants from semisynthetic storm water passing through a soil filter medium. Effluent levels of total suspended solids (TSS), Al, Cr, Cu, Pb and Zn were similarly low for vegetated and non-vegetated soils, with reduction to <1-12% of levels in the stormwater input. N and P effluent concentrations were generally lower from vegetated than non-vegetated soils, but total N increased on average in effluent of both vegetated and non-vegetated soils relative to stormwater input. Effluent concentrations varied 2-4-fold among species for TSS, total N and P, total dissolved N (TDN), organic nitrogen and Cu, to more than 20-fold for NOx, NH4+, Mn, Pb and Fe. Species also varied markedly in pollutant removal per root mass (a means of standardising for plant size), with 18-50-fold variation among species in effluent concentrations of total P and N, TDN and organic N, to >150-fold variation in NOx and NH4+. Hence, choice of plant species may have marked effects on biofilter effectiveness.


Subject(s)
Magnoliopsida/metabolism , Metals/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Water Pollutants/metabolism , Water Purification/methods , Filtration/methods , Metals/analysis , Nitrogen/analysis , Phosphorus/analysis , Rain , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...