Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathobiol Aging Age Relat Dis ; 7(1): 1267855, 2017.
Article in English | MEDLINE | ID: mdl-28326165

ABSTRACT

Considerable evidence suggests that oxidative stress plays a role in the pathogenesis of Parkinson's disease (PD), the most prevalent neurodegenerative movement disorder. Reduced expression of aldehyde dehydrogenase-1 (ALDH1) and glutathione peroxidase-1 (GPX1), enzymes that function to detoxify aldehydes and hydroxyl radicals, respectively, has been reported in the substantia nigra of patients who died with PD. To determine whether deficiency in these two genes contributes to the pathogenesis of PD, mice were generated with homozygous null mutations of both Aldh1a1 (the murine homolog of ALDH1) and Gpx1 genes [knockout (KO) mice]. At 6 and 18 months of age, KO mice showed a significantly decreased latency to fall in the automated accelerating rotarod test and increased time to complete the pole test opamine levels were not altered; however, the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) and the DOPAC/dopamine ratio were significantly reduced at 18 months of age. Proteins adducted with 4-hydroxynonenal, the end-product of lipid peroxidation, were increased in the. midbrain and striatum of KO mice at 6 and 18 months. In conclusion, dual mutations in Gpx1 and Aldh1a1 genes are associated with motor deficits and increased lipid peroxidation in adult mice.

2.
Article in English | MEDLINE | ID: mdl-26306821

ABSTRACT

BACKGROUND: Synucleinopathy is any of a group of age-related neurodegenerative disorders including Parkinson's disease, multiple system atrophy, and dementia with Lewy Bodies, which is characterized by α-synuclein inclusions and parkinsonian motor deficits affecting millions of patients worldwide. But there is no cure at present for synucleinopathy. Rapamycin has been shown to be neuroprotective in several in vitro and in vivo synucleinopathy models. However, there are no reports on the long-term effects of RAPA on motor function or measures of neurodegeneration in models of synucleinopathy. METHODS: We determined whether long-term feeding a rapamycin diet (14 ppm in diet; 2.25 mg/kg body weight/day) improves motor function in neuronal A53T α-synuclein transgenic mice (TG) and explored underlying mechanisms using a variety of behavioral and biochemical approaches. RESULTS: After 24 weeks of treatment, rapamycin improved performance on the forepaw stepping adjustment test, accelerating rotarod and pole test. Rapamycin did not alter A53T α-synuclein content. There was no effect of rapamycin treatment on midbrain or striatal monoamines or their metabolites. Proteins adducted to the lipid peroxidation product 4-hydroxynonenal were decreased in brain regions of both wild-type and TG mice treated with rapamycin. Reduced levels of the presynaptic marker synaptophysin were found in several brain regions of TG mice. Rapamycin attenuated the loss of synaptophysin protein in the affected brain regions. Rapamycin also attenuated the loss of synaptophysin protein and prevented the decrease of neurite length in SH-SY5Y cells treated with 4-hydroxynonenal. CONCLUSION: Taken together, these data suggest that rapamycin, an FDA approved drug, may prove useful in the treatment of synucleinopathy.

3.
PLoS One ; 7(2): e31522, 2012.
Article in English | MEDLINE | ID: mdl-22384032

ABSTRACT

Previous studies have reported elevated levels of biogenic aldehydes in the brains of patients with Parkinson's disease (PD). In the brain, aldehydes are primarily detoxified by aldehyde dehydrogenases (ALDH). Reduced ALDH1 expression in surviving midbrain dopamine neurons has been reported in brains of patients who died with PD. In addition, impaired complex I activity, which is well documented in PD, reduces the availability of the NAD(+) co-factor required by multiple ALDH isoforms to catalyze the removal of biogenic aldehydes. We hypothesized that chronically decreased function of multiple aldehyde dehydrogenases consequent to exposure to environmental toxins and/or reduced ALDH expression, plays an important role in the pathophysiology of PD. To address this hypothesis, we generated mice null for Aldh1a1 and Aldh2, the two isoforms known to be expressed in substantia nigra dopamine neurons. Aldh1a1(-/-)×Aldh2(-/-) mice exhibited age-dependent deficits in motor performance assessed by gait analysis and by performance on an accelerating rotarod. Intraperitoneal administration of L-DOPA plus benserazide alleviated the deficits in motor performance. We observed a significant loss of neurons immunoreactive for tyrosine hydroxylase (TH) in the substantia nigra and a reduction of dopamine and metabolites in the striatum of Aldh1a1(-/-)×Aldh2(-/-) mice. We also observed significant increases in biogenic aldehydes reported to be neurotoxic, including 4-hydroxynonenal (4-HNE) and the aldehyde intermediate of dopamine metabolism, 3,4-dihydroxyphenylacetaldehyde (DOPAL). These results support the hypothesis that impaired detoxification of biogenic aldehydes may be important in the pathophysiology of PD and suggest that Aldh1a1(-/-)×Aldh2(-/-) mice may be a useful animal model of PD.


Subject(s)
Aldehyde Dehydrogenase/genetics , Cytosol/enzymology , Mitochondria/enzymology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , 3,4-Dihydroxyphenylacetic Acid/analogs & derivatives , 3,4-Dihydroxyphenylacetic Acid/pharmacology , Aldehyde Dehydrogenase/physiology , Animals , Body Weight , Cognition Disorders , Disease Models, Animal , Dopamine/metabolism , Female , Genotype , Male , Mice , Mice, Transgenic , NAD/chemistry , Neurons/metabolism , Parkinson Disease/genetics , Time Factors , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...