Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Radiat Oncol ; 5(6): 1296-1304, 2020.
Article in English | MEDLINE | ID: mdl-33305091

ABSTRACT

PURPOSE: We combined clinical practice changes, standardizations, and technology to automate aggregation, integration, and harmonization of comprehensive patient data from the multiple source systems used in clinical practice into a big data analytics resource system (BDARS). We then developed novel artificial intelligence algorithms, coupled with the BDARS, to identify structure dose volume histograms (DVH) metrics associated with dysphagia. METHODS AND MATERIALS: From the BDARS harmonized data of ≥22,000 patients, we identified 132 patients recently treated for head and neck cancer who also demonstrated dysphagia scores that worsened from base line to a maximum grade ≥2. We developed a method that used both physical and biologically corrected (α/ß = 2.5) DVH curves to test both absolute and percentage volume based DVH metrics. Combining a statistical categorization algorithm with machine learning (SCA-ML) provided more extensive detailing of response threshold evidence than either approach alone. A sensitivity guided, minimum input, machine learning (ML) model was iteratively constructed to identify the key structure DVH metric thresholds. RESULTS: Seven swallowing structures producing 738 candidate DVH metrics were ranked for association with dysphagia using SCA-ML scoring. Structures included superior pharyngeal constrictor (SPC), inferior pharyngeal constrictor (IPC), larynx, and esophagus. Bilateral parotid and submandibular gland (SG) structures were categorized by relative mean dose (eg, SG_high, SG_low) as a dose versus tumor centric analog to contra and ipsilateral designations. Structure DVH metrics with high SCA-ML scores included the following: SPC: D20% (equivalent dose [EQD2] Gy) ≥47.7; SPC: D25% (Gy) ≥50.4; IPC: D35% (Gy) ≥61.7; parotid_low: D60% (Gy) ≥13.2; and SG_high: D35% (Gy) ≥61.7. Larynx: D25% (Gy) ≥21.2 and SG_low: D45% ≥28.2 had high SCA-ML scores but were segmented on less than 90% of plans. A model based on SPC: D20% (EQD2 Gy) alone had sensitivity and area under the curve of 0.88 ± 0.13 and 0.74 ± 0.17, respectively. CONCLUSIONS: This study provides practical demonstration of combining big data with artificial intelligence to increase volume of evidence in clinical learning paradigms.

2.
Adv Radiat Oncol ; 2(3): 503-514, 2017.
Article in English | MEDLINE | ID: mdl-29114619

ABSTRACT

PURPOSE: To develop statistical dose-volume histogram (DVH)-based metrics and a visualization method to quantify the comparison of treatment plans with historical experience and among different institutions. METHODS AND MATERIALS: The descriptive statistical summary (ie, median, first and third quartiles, and 95% confidence intervals) of volume-normalized DVH curve sets of past experiences was visualized through the creation of statistical DVH plots. Detailed distribution parameters were calculated and stored in JavaScript Object Notation files to facilitate management, including transfer and potential multi-institutional comparisons. In the treatment plan evaluation, structure DVH curves were scored against computed statistical DVHs and weighted experience scores (WESs). Individual, clinically used, DVH-based metrics were integrated into a generalized evaluation metric (GEM) as a priority-weighted sum of normalized incomplete gamma functions. Historical treatment plans for 351 patients with head and neck cancer, 104 with prostate cancer who were treated with conventional fractionation, and 94 with liver cancer who were treated with stereotactic body radiation therapy were analyzed to demonstrate the usage of statistical DVH, WES, and GEM in a plan evaluation. A shareable dashboard plugin was created to display statistical DVHs and integrate GEM and WES scores into a clinical plan evaluation within the treatment planning system. Benchmarking with normal tissue complication probability scores was carried out to compare the behavior of GEM and WES scores. RESULTS: DVH curves from historical treatment plans were characterized and presented, with difficult-to-spare structures (ie, frequently compromised organs at risk) identified. Quantitative evaluations by GEM and/or WES compared favorably with the normal tissue complication probability Lyman-Kutcher-Burman model, transforming a set of discrete threshold-priority limits into a continuous model reflecting physician objectives and historical experience. CONCLUSIONS: Statistical DVH offers an easy-to-read, detailed, and comprehensive way to visualize the quantitative comparison with historical experiences and among institutions. WES and GEM metrics offer a flexible means of incorporating discrete threshold-prioritizations and historic context into a set of standardized scoring metrics. Together, they provide a practical approach for incorporating big data into clinical practice for treatment plan evaluations.

SELECTION OF CITATIONS
SEARCH DETAIL
...