Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 135: 434-446, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28475971

ABSTRACT

Two mononuclear copper (II) terpyridine complexes namely, [Cu(Btptpy) (ClO4)](ClO4) 1, and [Cu(Bttpy) (ClO4)](ClO4) 2, (Btptpy (L1) = 4'-(Benzothiophene)-2,2':6',2″-terpyridine, Bttpy (L2) = 4'-(Benzylthiazolyl)-2,2':6',2″-terpyridine) have been synthesized and characterized. Single crystal X-ray diffraction shows that, both ligands belong to monoclinic crystal system with space group P21/c (L1) and P21/n (L2). Absorption spectral titration, DNA melting study, circular dichroism and viscosity measurement reveal that, complex 1 and 2 bind with DNA through intercalation. In addition, interaction between the two copper (II) complexes and bovine serum albumin (BSA) has been studied by fluorescence titration, circular dichroism and their protease activity has been investigated using SDS-PAGE gel electrophoresis. Agarose (AGE) and SDS-PAGE gel electrophoresis reveals both complexes have good nucleolytic and proteolytic property in the presence of additive hydrogen peroxide. Both complexes shows remarkable cytotoxic property against triple negative CAL-51 human breast cancer cell line and hepatocellular carcinoma (HepG2) cancer cell lines and bears very less cytotoxicity towards liver normal cell line (Changs). DCF-DA and TBRAS assay also supported that complex 1 and 2 induces elevated level of reactive oxygen species (ROS) and oxidative stress in cancer cells than normal cell line. Furthermore, FACS analysis confirms complex 1 and 2 brings apoptosis by growth phase cell cycle arrest.


Subject(s)
Antineoplastic Agents/pharmacology , DNA/chemistry , Organometallic Compounds/pharmacology , Serum Albumin, Bovine/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Copper/chemistry , Copper/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Thiophenes/chemistry , Thiophenes/pharmacology
2.
Dalton Trans ; 43(34): 13018-31, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-25033296

ABSTRACT

Two imidazole terpyridine (itpy) based complexes, [Cu(itpy)(OAc)(H2O)]NO3·H2O (1) and [Zn(itpy)(OAc)]OAc (2) have been synthesised and characterized. The crystal structure of complex 1 shows distorted octahedral geometry with an anti-parallel stacking arrangement. The interactions of the two complexes with Calf thymus DNA (ctDNA) have been studied using absorption titration and circular dichroism. Complex 1 shows coordinate binding to DNA bases, and complex 2 shows an intercalative mode of binding with DNA. Complex 1 cleaves the DNA via an oxidative pathway in the presence of additives, because of the presence of a redox active copper(II) centre. However, complex 2 cleaves DNA hydrolytically. Interactions of the two complexes with bovine serum albumin have been studied using fluorescence quenching and circular dichroism experiments. Circular dichroic analysis reveals that both the complexes strongly influence the secondary structure of the protein. Fluorescence quenching experiments indicate that there are different binding sites for complexes 1 and 2 on the protein. Furthermore, the complexes show potential cytotoxicity towards the A549 lung cancer cell line. Both the complexes have been found to induce apoptosis.


Subject(s)
Copper/chemistry , Cytotoxins/chemistry , DNA/metabolism , Imidazoles/chemistry , Zinc/chemistry , Animals , Cattle , Cell Line, Tumor , Copper/toxicity , Cytotoxins/toxicity , DNA Cleavage/drug effects , Humans , Imidazoles/toxicity , Protein Binding/physiology , Protein Structure, Secondary , X-Ray Diffraction , Zinc/toxicity
3.
J Inorg Biochem ; 101(3): 434-43, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17208305

ABSTRACT

Two new cobalt complexes, [Co(pytpy)(2)](ClO(4))(2), 1, and [Co(pytpy)(2)](ClO(4))(3), 2 where pytpy=pyridine terpyridine, have been synthesized and characterized. Single-crystal X-ray structure of both the complexes has been resolved. The structure shows the complexes to be a monomeric cobalt(II) and cobalt(III) species with two pytpy ligands coordinated to the metal ion to give a six coordinate complex. Both cobalt(II) and cobalt(III) complexes crystallize in meridional configuration. The interaction of these complexes with calf thymus DNA has been explored by using absorption, emission spectral, electrochemical studies and viscosity measurements. From the experimental results the DNA binding constants of 1 and 2 are found to be (1.97+/-0.15)x10(4)M(-1) and (2.7+/-0.20)x10(4)M(-1) respectively. The ratio of DNA binding constants of 1 and 2 have been estimated to be 0.82 from electrochemical studies, which is in close agreement with the value of 0.73 obtained from spectral studies. The observed changes in viscosity of DNA in the presence of increasing amount of complexes 1 and 2 suggest intercalating binding of these complexes to DNA. Results of DNA cleaving experiments reveal that complex 2 efficiently cleaves DNA under photolytic conditions while complex 1 does not cleave DNA under similar conditions.


Subject(s)
Cobalt/chemistry , DNA/chemistry , Intercalating Agents/chemistry , Organometallic Compounds/chemistry , Animals , Cattle , Crystallography, X-Ray , Molecular Structure , Photolysis , Pyridines/chemistry , Spectrum Analysis , Viscosity
4.
J Inorg Biochem ; 99(11): 2248-55, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16202452

ABSTRACT

[Cr(naphen)(H2O)(2)]+, where naphen is 1,2-bis(naphthylideneamino)ethane having the basic salen moiety, has been characterized structurally. [Cr(naphen)(H2O)(2)]+, which has an extended aromatic system and binds with calf thymus DNA (CT DNA) intercalatively, has been found to promote DNA cleavage in the presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide. Results of electron paramagnetic resonance (EPR) experiments suggest involvement of hydroxyl radicals in the oxidative cleavage of DNA in the presence of the Cr(III) complex and hydrogen peroxide. The cell viability study on nicked DNA by [Cr(naphen)(H2O)(2)]+ has shown that the damage brought about to DNA could be repaired by Escherichia coli DNA repair enzymes.


Subject(s)
Chromium/physiology , DNA Damage/drug effects , DNA Repair/physiology , Schiff Bases/pharmacology , Chromium/chemistry , Hydrogen-Ion Concentration , Schiff Bases/chemistry
5.
J Inorg Biochem ; 99(12): 2299-307, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16213589

ABSTRACT

The copper (II) complex [Cu(Itpy)(2)](ClO(4))(2) (1), (Itpy=imidazole terpyridine) has been synthesized and structurally characterized. Crystal structure of the complex shows the complex to be a monomeric copper (II) species with two Itpy ligands coordinated to the metal ion to give a six coordinate complex. The complex has a distorted octahedral geometry with axial elongation. Variable temperature crystal structure data shows dynamic nature of the Jahn-Teller distortion. The complex is an avid DNA binder with a binding constant of 4.26+/-0.20x10(3)M(-1). Observed changes in the viscosity and circular dichroic spectrum of calf thymus DNA solution in the presence of complex 1 suggests intercalative binding of complex 1 to DNA. The complex cleaves supercoiled pBR322 DNA oxidatively in the presence of hydrogen peroxide.


Subject(s)
Copper/pharmacology , DNA/drug effects , DNA/metabolism , Organometallic Compounds/pharmacology , Animals , Cattle , Copper/chemistry , Copper/metabolism , Crystallography, X-Ray , DNA/chemistry , Electron Spin Resonance Spectroscopy , In Vitro Techniques , Molecular Structure , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Oxidation-Reduction , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Spectrophotometry
6.
Inorg Chem ; 40(26): 6656-65, 2001 Dec 17.
Article in English | MEDLINE | ID: mdl-11735476

ABSTRACT

Reactions of the LCr(III) unit with an in situ prepared M(PyA)(3)(n-) ion, where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane and PyA(-) is the monoanion of pyridine-2-aldoxime, yield heterodinuclear complexes of general formula [LCr(III)(PyA)(3)M](2+/3+) as perchlorate salts, where M = Cr(II) (1), Mn(II) (2), low-spin Fe(II) (3), Ni(II) (4), Cu(II) (5), Zn(II) (6), and low-spin Co(III) (7). These compounds contain three oximato anions as bridging ligands. The hexadentate ligand with the identical donor atoms, tris(2-aldoximato-6-pyridyl)phosphine, P(PyA)(3), has been employed to prepare a second Cr(III)Ni(II) species 8, whose magnetic properties differ significantly from those of 4. Complexes 1-8 have been characterized on the basis of elemental analysis, mass spectrometry, IR, UV-vis, Mössbauer, and EPR spectroscopies, and variable-temperature (2-295 K) magnetic susceptibility measurements. They are isostructural in the sense that they all contain a terminal Cr(III) ion in a distorted octahedral environment, CrN(3)O(3), and a second six-coordinated metal ion M in a mostly trigonal prismatic MN(6) geometry. The crystal structures of the perchlorate salts of 2-5, 7, and 8 have been determined by X-ray crystallography at 100 K. The structures consist of mixed-metal Cr(III)M(II) and Cr(III)Co(III) complexes with a geometry in which two pseudooctahedral polyhedra are joined by three oximato (=N-O(-)) groups, with an intramolecular Cr.M(Co) distance in the range of 3.4-3.7 A. The cyclic voltammograms of the complexes reveal ligand oxidation and reduction processes, and in addition, metal-centered oxidation processes have been observed. X-band EPR spectroscopy has been used to establish the electronic ground state of the heterodinuclear complexes. Analysis of the susceptibility data indicates the presence of weak exchange interactions, both ferro- and antiferromagnetic, between the paramagnetic centers. A qualitative rationale on the basis of the Goodenough-Kanamori rules is provided for the difference in magnetic behaviors.

7.
J Am Chem Soc ; 123(41): 10012-23, 2001 Oct 17.
Article in English | MEDLINE | ID: mdl-11592879

ABSTRACT

The ligand 2-mercapto-3,5-di-tert-butylaniline, H[L(AP)], an o-aminothiophenol, reacts with metal(II) salts of Ni and Pd in CH3CN or C2H5OH in the presence of NEt3 under strictly anaerobic conditions with formation of beige to yellow cis-[M(II)(L(AP))2] (M = Ni (1), Pd (2)) where (L(AP))1- represents the o-aminothiophenolate(1-) form. The crystal structure of cis-[Pd(II)(L(AP))2][HN(C2H5)3][CH3CO2] has been determined by X-ray crystallography. In the presence of air the same reaction produces dark blue solutions from which mixtures of the neutral complexes trans/cis-[M(II)(L(ISQ))2] (M = Ni (1a/1b), Pd (2a/2b), and Pt (3a/3b)) have been isolated as dark blue-black solid materials. By using HPLC the mixture of 3a/3b has been separated into pure samples of 3a and 3b, respectively; (L(ISQ))1- represents the o-iminothionebenzosemiquinonate(1-) pi-radical. The structures of 1a.dmf and 3a.CH2Cl2 have also been determined. All compounds are square-planar and diamagnetic. 1H NMR spectroscopy established the cis <==> trans equilibrium of 1a/1b, 2a/2b, and 3a/3b in CH2Cl2 solution where the isomerization rate is very fast for the Ni, intermediate for the Pd, and very slow for the Pt species. It is shown that the electronic structures of 1a/1b, 2a/2b, 3a, and 3b are best described as diradicals with a singlet ground state. The spectro- and electrochemistries of all complexes display the usual full electron transfer series where the monocation, the neutral species, the mono- and dianions have been spectroscopically characterized. X-band EPR spectra of the monocations [1a/1b]+ and [3a]+ support the assignment of an oxidation-state distribution as predominantly [M(II)(L(ISQ))(L(IBQ))]+ where (L(IBQ))0 represents the o-iminothionequinone level. In contrast, the EPR spectra of the monoanions [1a/1b]- and [3a]- indicate an [M(II)(L(ISQ))(L(AP)-H)]- distribution but with a significant contribution of the [M(I)(L(ISQ))(2)]- resonance hybrid; (L(AP)-H)2- represents the o-imidothiophenolato(2-) oxidation level. Analysis of the geometric features of 120 published structures of complexes containing ligands of the o-aminothiophenolate type show that high precision X-ray crystallography allows to discern the differing protonation and oxidation levels of these ligands. o-Aminothiophenolates are unequivocally shown to be noninnocent ligands; the (L(ISQ))1- radical form is quite prevalent in coordination compounds and the electronic structure of a number of published complexes must be reconsidered.

8.
Inorg Chem ; 40(17): 4157-66, 2001 Aug 13.
Article in English | MEDLINE | ID: mdl-11487318

ABSTRACT

The coordination chemistry of the ligands 2-anilino-4,6-di-tert-butylphenol, H[L(AP)], and N,N"'-bis[2-(4,6-di-tert-butylphenol]diethylenetriamine, H(2)[(L(AP))N(L(AP))], has been studied with the first-row transition metal ions V, Cr, Fe, and Co. The ligands are noninnocent in the sense that the aminophenolato parts, [L(AP)](-) and [L(AP)-H](2)(-), can be readily oxidized to their o-iminobenzosemiquinonato, [L(ISQ)](-), and o-iminobenzoquinone, [L(ISB)], forms. The following neutral octahedral complexes have been isolated as crystalline materials, and their crystal structures have been determined by X-ray crystallography at 100 K: [Cr(III)(L(ISQ))(3)] (1), [Fe(III)(L(ISQ))(3)] (2), [Co(III)(L(ISQ))(3)] (3), [V(V)(L(ISQ))(L(AP)-H)(2)] (4), [V(V)(L(AP)-H)(2)(L(AP))] (5), and [V(V)O[(L(AP))N(L(AP)-H)]] (6). From variable-temperature magnetic susceptibility measurements and X-band EPR spectroscopy it has been established that they possess the ground states: 1, S = 0; 2, S = 1; 3, S = (3)/(2); 4, S = (1)/(2); 5, S = 0; 6, S = 0. The o-iminobenzosemiquinonato radicals (S(rad) = (1)/(2)) couple strongly intramolecularly antiferromagnetically to singly occupied orbitals of the t(2g) subshell at the respective metal ion but ferromagnetically to each other in 3 containing a Co(III) ion with a filled t(2g)(6) subshell. It is demonstrated that the oxidation level of the ligands and metal ions can be unequivocally determined by high-quality X-ray crystallography in conjunction with EPR, UV-vis, and Mössbauer spectroscopies. The spectro- and electrochemistry of these complexes have also been studied in detail. Metal- and ligand-based redox chemistry has been observed. The molecular and electronic structures are compared with those of their o-semiquinonato analogues.

9.
Inorg Chem ; 40(17): 4191-8, 2001 Aug 13.
Article in English | MEDLINE | ID: mdl-11487322

ABSTRACT

From the reaction of Li(cyclam-acetate), MnCl(2).4H(2)O, and KPF(6) in methanol brown microcrystals of [Mn(III)Cl(cyclam-acetato)]PF(6) (1) were obtained in the presence of air (cyclam-acetic acid = 1,4,8,11-tetraazacyclotetradecane-1-acetic acid). The reaction of 1 in aqueous NH(3) solution with NaOCl produced blue crystals of [Mn(V)N(cyclam-acetato)]PF(6) (2). Complexes 1 and 2 were characterized by single-crystal X-ray crystallography, IR and Raman, electronic absorption, and (1)H, (13)C, and (15)N NMR spectroscopies. Their magnetochemistry as well as their electrochemistry have been investigated. The complexes [MnN(cyclam-acetato)](+/2+) were studied by theoretical calculations at the DFT and semiempirical levels in order to obtain more insight into the ground and excited states of the Mn(V)(triple bond)N unit. Structural and spectroscopic parameters were successfully calculated and compared to experiment. A pictorial description of the bonding has been developed.

10.
J Am Chem Soc ; 123(10): 2213-23, 2001 Mar 14.
Article in English | MEDLINE | ID: mdl-11456867

ABSTRACT

The ligand 2-anilino-4,6-di-tert-butylphenol and its 2-(3,5-dichloroanilino)-4,6-di-tert-butylphenol analogue react in CH(3)CN or CH(3)OH solutions with divalent transition metal ions in the presence of air and triethylamine. Depending on the metal:ligand ratio (1:1, 1:2, or 1:3) and the presence (or absence) of the cyclic amine 1,4-dimethyl-1,4,7-triazacyclononane (dmtacn), the following complexes have been isolated as crystalline solids: [Co(III)(L(ISQ))(3)] (1); [Cu(II)(dmtacn)(L(ISQ))]PF(6) (2); [Cu(II)(L(ISQ))(2)] (3); [Ni(II)(L(ISQ))(2)] (4a); [Ni(II)((Cl)L(ISQ))(2)] (4b); [Pd(II)(L(ISQ))(2)] (5). (L(ISQ))(-) represents the monoanionic o-iminobenzosemiquinonate radical (S(rad) = (1)/(2)). Compounds 1-5 have been characterized by single-crystal X-ray crystallography at 100(2) K. For all complexes it is unambiguously established that the O,N-coordinated o-iminobenzosemiquinonato(1-) ligand is present. Complexes 3, 4b, and 5 are square planar molecules which possess an S(t) = (1)/(2), 0, and 0 ground state, respectively, as was established by (1)H NMR and EPR spectroscopies and variable-temperature magnetic susceptibility measurements. Complex 2 possesses an S(t) = 1 ground state which is attained via strong intramolecular ferromagnetic coupling (J = +195 cm(-1)) between the d(x)2-(y)2 magnetic orbital of the Cu(II) ion and the pi-orbital of the ligand radical. Complex 1 contains three mutually orthogonal (L(ISQ))(-*) ligands and has an S(t) = (3)/(2) ground state. It is shown that the electronic structure of 4a and 5 is adequately described as singlet diradical containing a divalent, diamagnetic d(8) configurated central metal ion and two strongly antiferromagnetically coupled (L(ISQ))(-) radical ligands. It is concluded that the same electronic structure prevails in the classic bis(o-diiminobenzosemiquinonato)- and bis(o-benzosemiquinonato)metal complexes of Ni(II), Pd(II), and Pt(II). The electrochemistry of all complexes has been investigated in detail. For 3, 4a, and 5 a series of reversible one-electron-transfer waves leads to the formation of the anions and cations [M(L)(2)](2-),(1-),(1+),(2+) which have been characterized spectroelectrochemically. All redox processes are shown to be ligand-based.

11.
J Am Chem Soc ; 123(25): 6025-39, 2001 Jun 27.
Article in English | MEDLINE | ID: mdl-11414836

ABSTRACT

Three hexadentate, asymmetric pendent arm macrocycles containing a 1,4,7-triazacyclononane-1,4-diacetate backbone and a third, N-bound phenolate or thiophenolate arm have been synthesized. In [L(1)](3)(-) the third arm is 3,5-di-tert-butyl-2-hydroxybenzyl, in [L(2)](3)(-) it is 2-mercaptobenzyl, and in [L(3)](3)(-) it is 3,5-di-tert-butyl-2-mercaptobenzyl. With trivalent metal ions these ligands form very stable neutral mononuclear complexes [M(III)L(1)] (M = Ga, Fe, Co), [M(III)L(2)] (M = Ga, Fe, Co), and [M(III)L(3)] (M = Ga, Co) where the gallium and cobalt complexes possess an S = 0 and the iron complexes an S = (5)/(2) ground state. Complexes [CoL(1)].CH(3)OH.1.5H(2)O, [CoL(3)].1.17H(2)O, [FeL(1)].H(2)O, and [FeL(2)] have been characterized by X-ray crystallography. Cyclic voltammetry shows that all three [M(III)L(1)] complexes undergo a reversible, ligand-based, one-electron oxidation generating the monocations [M(III)L(1)(*)](+) which contain a coordinated phenoxyl radical as was unambiguously established by their electronic absorption, EPR, and Mössbauer spectra. In contrast, [M(III)L(2)] complexes in CH(3)CN solution undergo an irreversible one-electron oxidation where the putative thiyl radical monocationic intermediates dimerize with S-S bond formation yielding dinuclear disulfide species [M(III)L(2)-L(2)M(III)](2+). [GaL(3)] behaves similarly despite the steric bulk of two tertiary butyl groups at the 3,5-positions of the thiophenolate, but [Co(III)L(3)] in CH(2)Cl(2) at -20 to -61 degrees C displays a reversible one-electron oxidation yielding a relatively stable monocation [Co(III)L(3)(*)](+). Its electronic spectrum displays intense transitions in the visible at 509 nm (epsilon = 2.6 x 10(3) M(-)(1) cm(-)(1)) and 670sh, 784 (1.03 x 10(3)) typical of a phenylthiyl radical. The EPR spectrum of this species at 90 K proves the thiyl radical to be coordinated to a diamagnetic cobalt(III) ion (g(iso) = 2.0226; A(iso)((59)Co) = 10.7 G).


Subject(s)
Cobalt/chemistry , Gallium/chemistry , Iron/chemistry , Phenols/chemistry , Sulfhydryl Compounds/chemistry , Dimerization , Free Radicals , Ligands , Mass Spectrometry , Models, Molecular , Molecular Conformation , Molecular Structure , Phenols/chemical synthesis , Structure-Activity Relationship , Sulfhydryl Compounds/chemical synthesis
12.
Chemistry ; 7(4): 917-31, 2001.
Article in English | MEDLINE | ID: mdl-11288884

ABSTRACT

Complex formation of the two tetraamine ligands (2S,3S)-1,2,3,4-tetraaminobutane (threo-tetraaminobutane, ttab) and (2R,3S)-1,2,3,4-tetraaminobutane (erythro-tetraaminobutane, etab) with Co(III), Ni(II), Cu(II), and Pd(II) was investigated in aqueous solution and in the solid state. For Ni(II) and Cu(II), the pH-dependent formation of a variety of species [Mn(II)xLyHz](2x+z)+ was established by potentiometric titrations and UV/Vis spectroscopy. In sufficiently acidic solutions the divalent cations formed a mononuclear complex with the doubly protonated ligand of composition [M(H2L)]4+. An example of such a complex was characterized in the crystal structure of [Pd(H2ttab)Cl2]Cl2.H2O. If the metal cation was present in excess, increase of pH resulted in the formation of dinuclear complexes [M2L]4+. Such a species was found in the crystal structure of [Cu2(ttab)Br4].H2O. Excess ligand, on the other hand, lead to the formation of a series of mononuclear bis-complexes [Mq(HxL)(HyL)](q+x+y)+. The crystal structure of [Co(Hetab)2][ZnCl4]2Cl. H2O with the inert, trivalent Co(III) center served as a model to illustrate the structural features of this class of complexes. By using an approximately equimolar ratio of the ligand and the metal cation, a variety of polymeric aggregates both in dilute aqueous solution and in the solid state were observed. The crystal structure of Cu2(ttab)3Br4, which exhibits a two-dimensional, infinite network, and that of [Ni8(ttab)12]Br16.17.5H2O, which contains discrete chiral [Ni8(ttab)12]16+ cubes with approximate T symmetry, are representative examples of such polymers. The energy of different diastereomeric forms of such complexes with the two tetraamine ligands were analyzed by means of molecular mechanics calculations, and the implications of these calculations for the different structures are discussed.

13.
Inorg Chem ; 39(24): 5437-43, 2000 Nov 27.
Article in English | MEDLINE | ID: mdl-11154558

ABSTRACT

For the recognition of all but the simplest naturally occurring molecules, electrochemical sensors based on ferrocene will certainly require chiral centers. To advance the necessary chemistry, this work describes the synthesis and properties of ferrocene derivatives of enantiomerically pure amino acids, peptides, and other chiral amines. Ferrocene aldehyde is condensed with amino acid esters to yield the corresponding Schiff bases 2, which are reduced by NaBH4 in methanol to the ferrocene methyl amino acids 3. An X-ray single-crystal analysis was carried out on the phenylalanine derivative 3a (monoclinic space group P2(1), a = 10.301(1) A, b = 9.647(1) A, c = 18.479(2) A, beta = 102.98(2) degrees, Z = 4). Further peptide chemistry at the C terminus proceeds smoothly as demonstrated by the synthesis of the ferrocene labeled dipeptide Fc-CH2-Phe-Gly-OCH3 5 (Fc = ferrocenyl ((eta-C5H4)Fe(eta-C5H5))). We also report the synthesis of the C,N-bis-ferrocene labeled tripeptide Phe-Ala-Leu and its electrochemical characterization. Starting from the enantiomerically pure ferrocene derivative 9, which was synthesized from ferrocene aldehyde and L-1-amino-ethylbenzene, two diastereomers 10 were obtained by peptide coupling with N-Boc protected D- and L-alanine. There was, however, only very little diastereomeric induction if 0.5 equiv of a racemic mixture of alanine were used. This suggests that amino acid activation rather than coupling is the rate-determining step. A combination of NOESY (nuclear Overhauser effect spectroscopy) spectra and molecular modeling furnished detailed insights into the solution structures of 3, 9, and 10 and was used to rationalize their different reactivity.


Subject(s)
Amines/chemistry , Amino Acids/chemistry , Ferrous Compounds/chemistry , Peptides/chemistry , Amines/chemical synthesis , Crystallography, X-Ray , Electrochemistry , Metallocenes , Molecular Structure , Spectrum Analysis
14.
Inorg Chem ; 39(15): 3355-64, 2000 Jul 24.
Article in English | MEDLINE | ID: mdl-11196875

ABSTRACT

The well-known tetradentate ligand 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-, and its 4,5-dichloro analogue, (bpc)2-, are shown to be "noninnocent" ligands in the sense that in coordination compounds they can exist in their radical one- and diamagnetic two-electron-oxidized forms (bpbox1)- and (bpbox2)0 (and (bpcox1)- and (bpcox2)0), respectively. Photolysis of high-spin [(n-Bu)4N][FeIII(bpb)(N3)2] and its (bpc)2- analogue in acetone solution at room temperature generates the diamagnetic dinuclear complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(N3)2] and its (bpc)2- analogue; the corresponding cyano complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2] has been prepared via N3- substitution by CN-. Photolysis in frozen acetonitrile solution produces a low-spin ferric species (S = 1/2) which presumably is [FeIII(bpbox2)(N)(N3)]-, as has been established by EPR and Mössbauer spectroscopy. The mononuclear complexes [(n-Bu)4N][FeIII(bpb)(CN2)] (low spin), [Et4N][CoIII(bpb)(CN)2] and Na[CoIII(bpc)-(CN)2].3CH3OH can be electrochemically or chemically one-electron-oxidized to give [FeIII(bpbox1)(CN)2]0 (S = 0), [CoIII(bpbox1)(CN)2]0 (S = 1/2), and [CoIII(bpcox1)(CN)2]0 (S = 1/2). All complexes have been characterized by UV-vis, EPR, and Mössbauer spectroscopy, and their electro- and magnetochemistries have been studied. The crystal structures of [(n-Bu)4N][FeIII(bpb)(N3)2].1/2C6H6CH3, Na[FeIII(bpb)(CN)2], Na[CoIII(bpc)(CN)2].3CH3OH, [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2], and [(n-Bu)4N][FeIV2(mu-N)(bpb)(N3)2] have been determined by single-crystal X-ray diffraction.

15.
Inorg Chem ; 39(13): 2936-47, 2000 Jun 26.
Article in English | MEDLINE | ID: mdl-11232835

ABSTRACT

A series of mononuclear, octahedral first-row transition metal ion complexes mer-[M(II)L0(2)](PF6)2 containing the tridentate neutral ligand 2,6-bis[1-(4-methoxyphenylimino)ethyl]pyridine (L0) and a Mn(II), Fe(II), Co(II), Ni(II), Cu(II), or Zn(II) ion have been synthesized and characterized by X-ray crystallography. Cyclic voltammetry and controlled potential coulometry show that each dication (except those of Cu(II) and Zn(II)) can be reversibly one-electron-oxidized, yielding the respective trications [M(III)L0(2)]3+, and in addition, they can be reversibly reduced to the corresponding monocations [ML2]+ and the neutral species [ML2]0 by two successive one-electron processes. [MnL2]PF6 and [CoL2]PF6 have been isolated and characterized by X-ray crystallography; their electronic structures are described as [Mn(III)L1(2)]PF6 and [Co(I)L0(2)]PF6 where (L1)1- represents the one-electron-reduced radical form of L0. The electronic structures of the tri-, di-, and monocations and of the neutral species have been elucidated in detail by a combination of spectroscopies: UV-vis, NMR, X-band EPR, Mossbauer, temperature-dependent magnetochemistry. It is shown that pyridine-2,6-diimine ligands are noninnocent ligands that can be coordinated to transition metal ions as neutral L0 or, alternatively, as monoanionic radical (L1)1-. All trications are of the type [M(III)L0(2)]3+, and the dications are [M(II)L0(2)]2+. The monocations are described as [Mn(III)L1(2)]+ (S = 0), [Fe(II)L0L1]+ (S = 1/2), [Co(I)L0(2)]+ (S = 1), [Ni(I)L0(2)]+ (S = 1/2), [Cu(I)L0(2)]+ (S = 0), [Zn(II)L1L0]+ (S = 1/2) where the Mn(II) and Fe(II) ions are low-spin-configurated. The neutral species are described as [Mn(II)L1(2)]0, [Fe(II)L1(2)]0, [Co(I)L0L1]0, [Ni(I)L0L1]0, and [Zn(II)L1(2)]0; their electronic ground states have not been determined.

16.
Inorg Chem ; 39(23): 5306-17, 2000 Nov 13.
Article in English | MEDLINE | ID: mdl-11187471

ABSTRACT

Reaction of the monoanionic, pentacoordinate ligand lithium 1,4,8,11-tetraazacyclotetradecane-1-acetate, Li(cyclam-acetate), with FeCl3 yields, upon addition of KPF6, [(cyclam-acetato)FeCl]PF6 (1) as a red microcrystalline solid. Addition of excess NaN3 prior to addition of KPF6 yields the azide derivative [(cyclam-acetato)FeN3]PF6 (2a) as orange microcrystals. The X-ray crystal structure of the azide derivative has been determined as the tetraphenylborate salt (2b). Reaction of 1 with silver triflate yields [(cyclam-acetato)Fe(O3SCF3)]PF6 (3), which partially dissociates triflate in nondried solvents to yield a mixture of triflate and aqua bound species. Each of the iron(III) derivatives is low-spin (d5, S = 1/2) as determined by variable-temperature magnetic susceptibility measurements, Mössbauer and EPR spectroscopy. The low-spin iron(II) (d6, S = 0) complexes 1red and 2ared have been prepared by electrochemical and chemical methods and have been characterized by Mössbauer spectroscopy. Photolysis of 2a at 419 nm in frozen acetonitrile yields a nearly colorless species in approximately 80% conversion with an isomer shift delta = -0.04 mm/s and a quadrupole splitting delta EQ = -1.67 mm/s. A spin-Hamiltonian analysis of the magnetic Mössbauer spectra is consistent with an FeV ion (d3, S = 3/2). The proposed [(cyclam-acetato)FeV=N]+ results from the photooxidation of 2a via heterolytic N-N cleavage of coordinated azide. Photolysis of 2a in acetonitrile solution at -35 degrees C (300 nm) or 20 degrees C (Hg immersion lamp) results primarily in photoreduction via homolytic Fe-Nazide cleavage yielding FeII (d,6 S = 0) with an isomer shift delta = 0.56 mm/s and quadrupole splitting delta EQ = 0.54 mm/s. A minor product containing high-valent iron is suggested by Mössbauer spectroscopy and is proposed to originate from [((cyclam-acetato)Fe)2(mu-N)]2+ with a mixed-valent (FeIV(mu-N)FeIII))4+S = 1/2 core. Exposure of 3 to a stream of oxygen/ozone at low temperatures (-80 degrees C) in acetone/water results in a single oxidized product with an isomer shift delta = 0.01 mm/s and quadrupole splitting delta EQ = 1.37 mm/s. A spin-Hamiltonian analysis of the magnetic Mössbauer yields parameters similar to those of compound II of horseradish peroxidase which are consistent with an FeIV=O monomeric complex (S = 1).

17.
Inorg Chem ; 39(5): 930-8, 2000 Mar 06.
Article in English | MEDLINE | ID: mdl-12526371

ABSTRACT

The six-coordinate complexes [M(N)(CN)5]3- (M = Cr, Mn) have been isolated as salts of robust rhodium amine complexes. [Rh(en)3][Mn(N)(CN)5].H2O (1) and [Rh(tn)3] [Cr(N)(CN)5].2H2O (2) have been characterized by single-crystal X-ray crystallography: 1 crystallizes in the hexagonal space group P6(3) with a = b = 15.810(2) A, c = 13.844(3) A, V = 2996.8(8) A3, and Z = 6; 2 crystallizes in the orthorhombic space group Pbcn with a = 9.723(1) A, b = 14.564(2) A, c = 31.498(4) A, V = 4460.3(8) A3, and Z = 8. In 1, all the anions are oriented with their Mn identical to N directions almost coparallel to the crystallographic 3-fold axis. Polarized single-crystal UV-vis spectroscopy of 1 confirms the validity of the Jørgensen-Ballhausen-Gray d-orbital splitting scheme with the lowest energy transition being dxy-->[dyz,dzx]. Single-crystal EPR spectroscopy of [Cr(N)(CN)5]3- diluted into 1 shows the hyperfine (53Cr) and super-hyperfine (14N) tensors to be quite anisotropic with different major axes. For the hyperfine interaction we observe A Parallel > A Perpendicular, whereas, for the super-hyperfine interaction to the terminal nitrido ligand, the reverse ordering is found: A Perpendicular > A Parallel. The complexes [M(N)(CN)5]3-, trans-[M(N)(CN)4(py)]2-, and [M(N)(CN)4]2- (M = Cr, Mn) were investigated by DFT methods. Good reproduction of the molecular structures, vibrational, and UV-vis spectra was obtained. However, pronounced differences between local density and gradient corrected functionals were observed in the description of the weak bonding to the ligands trans to the nitrido ligand. For the five-coordinate [M(N)(CN)4]2- complexes the LUMO is predicted to be a strongly admixed dz2(M)-pz(M) hybrid.

18.
Angew Chem Int Ed Engl ; 38(18): 2766-2768, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10508376

ABSTRACT

Localized valencies are displayed by the Mn(V)-Mn(II) complex ion 1. This is the key finding from X-ray structure analysis, as well as vibrational and EPR spectroscopic invesigations on 1 obtained by the reaction of manganese(II) and [Mn(v)(N)(CN)(5)](3-) salts in aqueous 1 M NaCN solution. Remarkably, the asymmetry is induced by the nitrogen atom bridge.

19.
Angew Chem Int Ed Engl ; 38(8): 1095-8, 1999.
Article in English | MEDLINE | ID: mdl-25138506

ABSTRACT

Primary alcohols such as ethanol or benzyl alcohol are selectively and catalytically oxidized by the mononuclear copper(II) radical complex 1-a functional model of the metalloenzyme galactose oxidase-with oxygen from air at 20°C to give the corresponding aldehydes and H2 O2 in about 60 % yield.

20.
Chemistry ; 3(2): 308-19, 1997 Feb.
Article in English | MEDLINE | ID: mdl-24022963

ABSTRACT

The hexadentate macrocyclic ligands 1,4,7-tris(3,5-dimethyl-2-hydroxybenzyl)-1,4,7-triazacyclononane (L CH 3H3 ), 1,4,7-tris(3,5-di-tert-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane (L(Bu) H3 ) and 1,4,7-tris(3-tert-butyl-5-methoxy-2-hydroxybenzyl)-1,4,7-triazacyclononane (L OCH 3-H3 ) form very stable octahedral neutral complexes LM(III) with trivalent (or tetravalent) metal ions (Ga(III) , Sc(III) , Fe(III) , Mn(III) , Mn(IV) ). The following complexes have been synthesized: [L(Bu) M], where M = Ga (1), Sc (2), Fe (3); [L(Bu) Mn(IV) ]PF6 (4'); [L OCH 3M], where M = Ga (1 a), Sc (2 a), Fe (3 a); [L OCH 3Mn(IV) ]PF6 (4 a'); [L CH 3M], where M = Sc (2 b), Fe (3 b), Mn(III) (4 b); [L CH 3Mn(IV) ]2 (ClO4 )3 (H3 O)(H2 O)3 (4 b'). An electrochemical study has shown that complexes 1, 2, 3, 1 a, 2 a and 3 a each display three reversible, ligand-centred, one-electron oxidation steps. The salts [L OCH 3Fe(III) ]ClO4 and [L OCH 3Ga(III) ]ClO4 , have been isolated as stable crystalline materials. Electronic and EPR spectra prove that these oxidations produce species containing one, two or three coordinated phenoxyl radicals. The Mössbauer spectra of 3 a and [3 a](+) show conclusively that both compounds contain high-spin iron(III) central ions. Temperature-dependent magnetic susceptibility measurements reveal that 3 a has an S = 5/2 and [3a](+) an S = 2 ground state. The latter is attained through intramolecular antiferromagnetic exchange coupling between a high-spin iron(III) (S1 = 5/2) and a phenoxyl radical (S2 = 1/2) (H = - 2JS1 S2 ; J = - 80 cm(-1) ). The manganese complexes undergo metal- and ligand-centred redox processes, which were elucidated by spectroelectrochemistry; a phenoxyl radical Mn(IV) complex [Mn(IV) L OCH 3](2+) is accessible.

SELECTION OF CITATIONS
SEARCH DETAIL
...