Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 250: 115143, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36841086

ABSTRACT

Recent discoveries have demonstrated that the physiological function of bile acids extends to the regulation of diverse signaling processes through interactions with nuclear and G protein-coupled receptors, most notably the Farnesoid-X nuclear receptor (FXR) and the G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). Targeting such signaling pathways pharmacologically, i.e. with bile acid-derived therapeutics, presents great potential for the treatment of various metabolic, inflammatory immune, liver, and neurodegenerative diseases. Here we report the discovery of two potent and selective TGR5 agonists (NZP196 and 917). These compounds are the taurine conjugates of 6α-ethyl-substituted 12ß-methyl-18-nor-bile acids with the side chain being located on the α-face of the steroid scaffold. The compounds emerged from a screening effort of a diverse library of 12ß-methyl-18-nor-bile acids that were synthesized from 12ß-methyl-18-nor-chenodeoxycholic acid and its C17-epimer. Upon testing for FXR activity, both compounds were found to be inactive, thus revealing selectivity for TGR5.


Subject(s)
Bile Acids and Salts , Receptors, G-Protein-Coupled , Bile Acids and Salts/pharmacology , Receptors, G-Protein-Coupled/agonists , Signal Transduction , Liver/metabolism , Chenodeoxycholic Acid
2.
Molecules ; 27(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408759

ABSTRACT

Bile acid receptors have been identified as important targets for the development of new therapeutics to treat various metabolic and inflammatory diseases. The synthesis of new bile acid analogues can help elucidate structure-activity relationships and define compounds that activate these receptors selectively. Towards this, access to large quantities of a chenodeoxycholic acid derivative bearing a C-12 methyl and a C-13 to C-14 double bond provided an interesting scaffold to investigate the chemical manipulation of the C/D ring junction in bile acids. The reactivity of this alkene substrate with various zinc carbenoid species showed that those generated using the Furukawa methodology achieved selective α-cyclopropanation, whereas those generated using the Shi methodology reacted in an unexpected manner giving rise to a rearranged skeleton whereby the C ring has undergone contraction to form a novel spiro-furan ring system. Further derivatization of the cyclopropanated steroid included O-7 oxidation and epimerization to afford new bile acid derivatives for biological evaluation.


Subject(s)
Bile Acids and Salts , Chenodeoxycholic Acid , Chenodeoxycholic Acid/chemistry , Oxidation-Reduction , Steroids , Structure-Activity Relationship
3.
Org Biomol Chem ; 20(17): 3511-3527, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35230376

ABSTRACT

In the quest for new modulators of the Farnesoid-X (FXR) and Takeda G-protein-coupled (TGR5) receptors, bile acids are a popular candidate for drug development. Recently, bile acids endowed with a C16-hydroxy group emerged as ligands of FXR and TGR5 with remarkable agonistic efficacies. Inspired by these findings, we synthesised a series of C16-hydroxylated 12ß-methyl-18-nor-bile acid analogues from a Δ13(17)-12ß-methyl-18-nor-chenodeoxycholic acid intermediate (16), the synthesis of which we reported previously. The preparation of these aptly named 12ß-methyl-18-nor-avicholic acids (17, 18, 41 and 42) was accomplished via allylic oxidation at C16, hydrogenation of the C13→C17 double bond and selective reduction of the C16-carbonyl group. Described also are various side products which were isolated during the evaluation of methods to affect the initial allylic oxidation. In addition, C23-methyl modified 12ß-methyl-18-nor-bile acids with (48, 49, 51 and 52) and without a C16-hydroxy group (45, 46 and 55), were synthesized to enable comparison of biological activities between these compounds and their un-methylated counterparts. As a result of our investigations we identified (23R)-12ß,23-dimethyl-18-nor-chenodeoxycholic acid (46) and 12ß-methyl-17-epi-18-nor-chenodeoxycholic acid 53 as TGR5 ligands with EC50 values of 25 µM.


Subject(s)
Bile Acids and Salts , Chenodeoxycholic Acid , Bile Acids and Salts/pharmacology , Chenodeoxycholic Acid/analogs & derivatives , Hydrogenation , Ligands
4.
Biomolecules ; 13(1)2022 12 30.
Article in English | MEDLINE | ID: mdl-36671460

ABSTRACT

Parkinson's Disease is the most common neurodegenerative movement disorder globally, with prevalence increasing. There is an urgent need for new therapeutics which are disease-modifying rather than symptomatic. Mitochondrial dysfunction is a well-documented mechanism in both sporadic and familial Parkinson's Disease. Furthermore, ursodeoxycholic acid (UDCA) has been identified as a bile acid which leads to increased mitochondrial function in multiple in vitro and in vivo models of Parkinson's Disease. Here, we describe the synthesis of novel C-nor-D-homo bile acid derivatives and the 12-hydroxy-methylated derivative of lagocholic acid (7) and their biological evaluation in fibroblasts from patients with either sporadic or LRRK2 mutant Parkinson's Disease. These compounds boost mitochondrial function to a similar level or above that of UDCA in many assays; notable, however, is their ability to boost mitochondrial function to a higher level and at lower concentrations than UDCA specifically in the fibroblasts from LRRK2 patients. Our study indicates that novel bile acid chemistry could lead to the development of more efficacious bile acids which increase mitochondrial function and ultimately cellular health at lower concentrations proving attractive potential novel therapeutics for Parkinson's Disease.


Subject(s)
Parkinson Disease , Humans , Bile Acids and Salts , Parkinson Disease/drug therapy , Ursodeoxycholic Acid/pharmacology , Cholanes/chemistry
5.
ACS Omega ; 6(38): 25019-25039, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34604682

ABSTRACT

Decoupling the roles of the farnesoid X nuclear receptor and Takeda G-protein-coupled bile acid receptor 5 is essential for the development of novel bile acid therapeutics targeting metabolic and neurodegenerative diseases. Herein, we describe the synthesis of 12ß-methyl-18-nor-bile acids which may serve as probes in the search for new bile acid analogues with clinical applicability. A Nametkin-type rearrangement was applied to protected cholic acid derivatives, giving rise to tetra-substituted Δ13,14- and Δ13,17-unsaturated 12ß-methyl-18-nor-bile acid intermediates (24a and 25a). Subsequent catalytic hydrogenation and deprotection yielded 12ß-methyl-18-nor-chenodeoxycholic acid (27a) and its 17-epi-epimer (28a) as the two major reaction products. Optimization of the synthetic sequence enabled a chromatography-free route to prepare these bile acids at a multi-gram scale. In addition, the first cis-C-D ring-junctured bile acid and a new 14(13 → 12)-abeo-bile acid are described. Furthermore, deuteration experiments were performed to provide mechanistic insights into the formation of the formal anti-hydrogenation product 12ß-methyl-18-nor-chenodeoxycholic acid (27a).

6.
Chemistry ; 26(16): 3504-3508, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-31944467

ABSTRACT

A highly enantioselective, organocatalytic, and scalable synthesis of a very unusual cis-decalin-cis-hydrindane tricyclic diterpenoid system has been achieved. Despite the prevalent pharmacological space that the related trans,trans and trans,cis-systems occupy, there have been no reports of an asymmetric synthesis of the cis,cis systems in the literature until now. We demonstrate the flexibility of our approach not only through access to a diverse range of products, all of which are attained in exceptionally high selectivities, but also by showing their easy conversion to the corresponding trans,cis-system and other derivatives.

7.
Chemistry ; 23(12): 2811-2819, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-27906491

ABSTRACT

Rational modulations of molecular interactions are of significant importance in compound properties optimization. We have previously shown that fluorination of conformationally rigid cyclohexanols leads to attenuation of their hydrogen-bond (H-bond) donating capacity (designated by pKAHY ) when OH⋅⋅⋅F intramolecular hydrogen-bond (IMHB) interactions occur, as opposed to an increase in pKAHY due to the fluorine electronegativity. This work has now been extended to a wider range of aliphatic ß-fluorohydrins with increasing degrees of conformational flexibility. We show that the observed differences in pKAHY between closely related diastereomers can be fully rationalized by subtle variations in populations of conformers able to engage in OH⋅⋅⋅F IMHB, as well as by the strength of these IMHBs. We also show that the Kenny theoretical Vα (r) descriptor of H-bond acidity accurately reflects the observed variations and a calibration equation extended to fluorohydrins is proposed. This work clearly underlines the importance of the weak OH⋅⋅⋅F IMHB in the modulation of alcohol H-bond donating capacity.

8.
Angew Chem Int Ed Engl ; 55(2): 674-8, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26592706

ABSTRACT

Property tuning by fluorination is very effective for a number of purposes, and currently increasingly investigated for aliphatic compounds. An important application is lipophilicity (log P) modulation. However, the determination of log P is cumbersome for non-UV-active compounds. A new variation of the shake-flask log P determination method is presented, enabling the measurement of log P for fluorinated compounds with or without UV activity regardless of whether they are hydrophilic or lipophilic. No calibration curves or measurements of compound masses/aliquot volumes are required. With this method, the influence of fluorination on the lipophilicity of fluorinated aliphatic alcohols was determined, and the log P values of fluorinated carbohydrates were measured. Interesting trends and changes, for example, for the dependence on relative stereochemistry, are reported.

9.
Carbohydr Res ; 406: 71-5, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25681996

ABSTRACT

Gemcitabine, 2'-deoxy-2',2'-difluorocytidine, is currently prescribed against a number of cancers. Here we report a linear synthesis of gemcitabine with a high-yielding direct conversion of 3,5-di-O-benzoyl-2-deoxy-2,2-difluororibose into the corresponding glycosyl urea as the key step, followed by conventional conversion to the cytosine base via the uracil derivative. The process proceeded with modest anomeric selectivity.


Subject(s)
Antimetabolites, Antineoplastic/chemical synthesis , Deoxycytidine/analogs & derivatives , Acylation , Catalysis , Cyclization , Deoxycytidine/chemical synthesis , Urea/chemistry , Gemcitabine
10.
Carbohydr Res ; 387: 59-73, 2014 Mar 31.
Article in English | MEDLINE | ID: mdl-24636495

ABSTRACT

Gemcitabine is a fluorinated nucleoside currently administered against a number of cancers. It consists of a cytosine base and a 2-deoxy-2,2-difluororibose sugar. The synthetic challenges associated with the introduction of the fluorine atoms, as well as with nucleobase introduction of 2,2-difluorinated sugars, combined with the requirement to have an efficient process suitable for large scale synthesis, have spurred significant activity towards the synthesis of gemcitabine exploring a wide variety of synthetic approaches. In addition, many methods have been developed for selective crystallisation of diastereomeric (including anomeric) mixtures. In that regard, the 2-deoxy-2,2-difluororibose sugar is one of the most investigated fluorinated carbohydrates in terms of its synthesis. The versatility of synthetic methods employed is illustrative of the current state of the art of fluorination methodology for the synthesis of CF2-containing carbohydrates, and involves the use of fluorinated building blocks, as well as nucleophilic and electrophilic fluorination of sugar precursors.


Subject(s)
Deoxycytidine/analogs & derivatives , Molecular Structure , Neoplasms/drug therapy , Carbohydrates/chemistry , Deoxycytidine/chemical synthesis , Deoxycytidine/chemistry , Fluorine/chemistry , Halogenation , Humans , Stereoisomerism , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...